Journal of Elasticity

, Volume 123, Issue 2, pp 179–201 | Cite as

Stress Gradient Elasticity Theory: Existence and Uniqueness of Solution



The objective of the present article is to assess the well-posedness of the stress gradient linear elastic problems recently introduced by Forest and Sab (Mech. Res. Commun. 40:16–25, 2012) and to formulate the corresponding existence and uniqueness theorems. In particular, we show that such theorems can be established in the case of the boundary value problems formulated in (Forest and Sab in Mech. Res. Commun. 40:16–25, 2012) with the corresponding boundary conditions.


Stress gradient elasticity Higher order elasticity Boundary conditions Existence and uniqueness of solution 

Mathematics Subject Classification (2000)

35D30 35J56 35Q74 


  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, San Diego, CA (1975) MATHGoogle Scholar
  2. 2.
    Amrouche, C., Ciarlet, P.G., Gratie, L., Kesavan, S.: On the characterizations of matrix fields as linearized strain tensor fields. J. Math. Pures Appl. 86, 116–132 (2006) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Auffray, N.: Analytical expressions for odd-order anisotropic tensor dimension. C. R., Méc. 342, 284–291 (2014) CrossRefGoogle Scholar
  4. 4.
    Auffray, N., Le Quang, H., He, Q.C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61, 1202–1223 (2013) ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bleustein, J.L.: A note on the boundary conditions of Toupin’s strain-gradient theory. Int. J. Solids Struct. 3, 1053–1057 (1967) CrossRefGoogle Scholar
  6. 6.
    Chakravarthy, S.S., Curtin, W.A.: Stress-gradient plasticity. Proc. Natl. Acad. Sci. USA 108, 15716–15720 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    Dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C. R. Acad. Sci. Paris IIb 321, 303–308 (1995) MATHGoogle Scholar
  8. 8.
    Dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”. Z. Angew. Math. Phys. 63, 1119–1141 (2012) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002) MATHGoogle Scholar
  11. 11.
    Forest, S., Aifantis, E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010) CrossRefMATHGoogle Scholar
  12. 12.
    Forest, S., Sab, K.: Stress gradient continuum theory. Mech. Res. Commun. 40, 16–25 (2012) CrossRefGoogle Scholar
  13. 13.
    Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus, première partie: théorie du second gradient. J. Méc. 12, 235–274 (1973) MathSciNetMATHGoogle Scholar
  14. 14.
    Iesan, D.: Thermoelasticity of bodies with microstructure and microtemperatures. Int. J. Solids Struct. 44, 8648–8662 (2007) CrossRefMATHGoogle Scholar
  15. 15.
    Iesan, D., Quintanilla, R.: Existence and continuous dependence results in the theory of microstretch elastic bodies. Int. J. Eng. Sci. 32, 991–1001 (1994) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Iesan, D., Quintanilla, R.: On a strain gradient theory of thermoviscoelasticity. Mech. Res. Commun. 48, 52–58 (2013) CrossRefGoogle Scholar
  17. 17.
    Jeong, J., Neff, P.: Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids 15, 78–95 (2010) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lebée, A., Sab, K.: A bending-gradient model for thick plates, Part I: Theory. Int. J. Solids Struct. 48, 2878–2888 (2011) CrossRefGoogle Scholar
  19. 19.
    Lebée, A., Sab, K.: A bending-gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates. Int. J. Solids Struct. 48, 2889–2901 (2011) CrossRefGoogle Scholar
  20. 20.
    Mindlin, R.D.: Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965) CrossRefGoogle Scholar
  21. 21.
    Mindlin, R.D., Eshel, N.N.: On first strain gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968) CrossRefMATHGoogle Scholar
  22. 22.
    Moreau, J.J.: Duality characterization of strain tensor distributions in an arbitrary open set. J. Math. Anal. Appl. 72, 760–770 (1979) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Necas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967) Google Scholar
  24. 24.
    Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87, 239–276 (2007) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Olive, M., Auffray, N.: Symmetry classes for even-order tensors. Math. Mech. Complex Syst. 1, 177–210 (2013) CrossRefMATHGoogle Scholar
  26. 26.
    Olive, M., Auffray, N.: Symmetry classes for odd-order tensors. Z. Angew. Math. Mech. 94, 421–447 (2014) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Polizzotto, C.: Stress gradient versus strain gradient constitutive models within elasticity. Int. J. Solids Struct. 51, 1809–1818 (2014) CrossRefGoogle Scholar
  28. 28.
    Polizzotto, C.: A unifying variational framework for stress gradient and strain gradient elasticity theories. Eur. J. Mech. A, Solids 49, 430–440 (2015) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary value problems in gradient elasticity. Acta Mech. 101, 59–68 (1993) MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratoire Navier (ENPC, IFSTTAR, CNRS UMR 8205)Université Paris-EstMarne-la-Vallée Cedex 2France
  2. 2.INRIA RocquencourtMATHERIALS project-teamLe Chesnay CedexFrance
  3. 3.MINES ParisTech, Centre des matériauxCNRS UMR 7633Evry CedexFrance

Personalised recommendations