Advertisement

Journal of Elasticity

, Volume 123, Issue 1, pp 1–18 | Cite as

New Variational Principles for Solving Extended Dirichlet-Neumann Problems

  • Claude Vallée
  • Vicenţiu D. Rădulescu
  • Kossi Atchonouglo
Article

Abstract

We extend in this paper the classical variational methods devoted to solve the Dirichlet-Neumann problems. We assume that the intensive and extensive parameters are related by a maximal monotone multifunction. The Fitzpatrick’s method allows us to elaborate new variational principles.

Keywords

Dirichlet-Neumann problems Primal-dual variational problems Fitzpatrick functions Fitzpatrick sequences Uzawa-type algorithm Heat conduction Nonlinear elasticity 

Mathematics Subject Classification

30E25 90C46 90C25 80A20 74B20 

Notes

Acknowledgements

V. Rădulescu has been supported through Grant CNCS PCCA-23/2014.

References

  1. 1.
    Allaire, G.: Numerical Analysis and Optimization. An Introduction to Mathematical Modelling and Numerical Simulation. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2007) MATHGoogle Scholar
  2. 2.
    Allaire, G.: Analyse Numérique et Optimisation. Éditions de l’École Polytechnique, Palaiseau (2009) Google Scholar
  3. 3.
    Amrouche, C., Ciarlet, P.G., Gratie, L., Kesavan, S.: On Saint Venant’s compatibility conditions and Poincaré’s lemma. C. R. Math. Acad. Sci. Paris 342, 887–891 (2006) CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Amrouche, C., Ciarlet, P.G., Gratie, L., Kesavan, S.: On the characterizations of matrix fields as linearized strain tensor fields. J. Math. Pures Appl. 86, 116–132 (2006) CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford, CA (1958) Google Scholar
  6. 6.
    Bacuta, C.: A unified approach for Uzawa algorithms. SIAM J. Numer. Anal. 44, 2633–2649 (2006) CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick function, cyclic monotonicity and Rockafellar antiderivative. Nonlinear Anal. 66, 1198–1223 (2007) CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. 18, 789–809 (2007) CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Bauschke, H.H., Lucet, Y., Wang, X.: Primal-dual symmetric antiderivatives for cyclically monotone operators. SIAM J. Control Optim. 46, 2031–2051 (2007) CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Berga, A.: Mathematical and numerical modeling of the non-associated plasticity of soils: the boundary value problem. Int. J. Non-Linear Mech. 47, 26–35 (2012) CrossRefADSGoogle Scholar
  11. 11.
    Bouby, C., de Saxcé, G., Tritsch, J.-B.: Shakedown analysis: comparison between models with the linear unlimited, linear limited and nonlinear kinematic hardening. Mech. Res. Commun. 36, 556–562 (2009) CrossRefMATHGoogle Scholar
  12. 12.
    Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. C. R. Acad. Sci. Paris Sér. A 282, 971–974 (1976) MathSciNetMATHGoogle Scholar
  13. 13.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) CrossRefMATHGoogle Scholar
  14. 14.
    Buliga, M., de Saxcé, G., Vallée, C.: Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal. 15, 87–104 (2008) MathSciNetMATHGoogle Scholar
  15. 15.
    Buliga, M., de Saxcé, G., Vallée, C.: Bipotentials for non-monotone multivalued operators: fundamental results and applications. Acta Appl. Math. 110, 955–972 (2010) CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Buliga, M., de Saxcé, G., Vallée, C.: Non maximal cyclically monotone graphs and construction of a bipotential for the Coulomb’s dry friction law. J. Convex Anal. 17, 81–94 (2010) MathSciNetMATHGoogle Scholar
  17. 17.
    Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002) CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) MATHGoogle Scholar
  19. 19.
    Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013) MATHGoogle Scholar
  20. 20.
    Ciarlet, P.G., Geymonat, G., Krasucki, F.: Legendre-Fenchel duality in elasticity. C. R. Acad. Sci. Paris Sér. A 349, 597–602 (2011) CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Ciarlet, P.G., Geymonat, G., Krasucki, F.: A new duality approach to elasticity. Math. Models Methods Appl. Sci. 22(1), 1–21 (2012) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Fitzpatrick, S.: Representing monotone operators by convex functions. In: Fitzpatrick, S.P., Giles, J.R. (eds.) Workshop/Miniconference on Functional Analysis and Optimization, Canberra, Australia, August 8–24, 1988. Proceedings of the Centre for Mathematical Analysis of the Australian National University, vol. 20, pp. 59–65 (1988) Google Scholar
  23. 23.
    Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solutions of Boundary Value Problems. Stud. Math. Appl., vol. 15. North-Holland, Amsterdam (1983) Google Scholar
  24. 24.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986) CrossRefMATHGoogle Scholar
  25. 25.
    Hjiaj, M., de Saxcé, G.: Variational formulation of the Cam-Clay model. In: Daya Reddy, B. (ed.) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. Proceedings of the IUTAM Symposium held at Cape Town, South Africa, January 14–18, 2008. IUTAM Bookseries, vol. 11 (2008) Google Scholar
  26. 26.
    Lemaître, J.: Formulation and identification of damage kinetic constitutive equation. In: Krajcinovic, D., Lemaître, J. (eds.) Continuum Damage Mechanics, Theory and Applications. International Centre for Mechanical Sciences, CISM Courses and Lectures, vol. 295. Springer, New York (1987) Google Scholar
  27. 27.
    Lemaître, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990) CrossRefMATHGoogle Scholar
  28. 28.
    Lions, J.-L., Magenes, E.: Problèmes aux Limites Non Homogènes et Applications, vol. 1. Dunod, Paris (1968) MATHGoogle Scholar
  29. 29.
    Martinez-Legal, J.E., Théra, M.: A convex representation of maximal monotone operators. J. Nonlinear Convex Anal. 2, 243–247 (2001) MathSciNetGoogle Scholar
  30. 30.
    Moreau, J.J.: Application of convex analysis to the treatment of elasto-plastic systems. In: Germain, P., Nayroles, B. (eds.) Applications of Methods of Functional Analysis to Problems in Mechanics. Lecture Notes in Mathematics, vol. 503. Springer, Berlin (1976) CrossRefGoogle Scholar
  31. 31.
    Moreau, J.J.: In: Fonctionnelles Convexes, Istituto poligrafico e zecca dello stato S.p.A., Roma (2003) Google Scholar
  32. 32.
    Nayroles, B.: Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282, A1035–A1038 (1976) MathSciNetGoogle Scholar
  33. 33.
    Phelps, R.R., Simons, S.: Unbounded linear monotone operators on non reflexive Banach spaces. J. Convex Anal. 5, 303–328 (1998) MathSciNetMATHGoogle Scholar
  34. 34.
    Rockafellar, R.T.: Characterization of the subdifferential of convex functions. Pac. J. Math. 17, 497–510 (1966) CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970) CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    de Saxcé, G., Bousshine, L.: Implicit standard materials. In: Weichert, D., Maier, G. (eds.) Inelastic Behaviour of Structures under Variable Repeated Loads—Direct Analysis Methods. International Centre for Mechanical Sciences, CISM Courses and Lectures IV, vol. 432. Springer, Wien, New York (2002) Google Scholar
  37. 37.
    de Saxcé, G., Feng, Z.Q.: New inequation and functional for contact with friction. Mech. Struct. Mach. Int. J. 19, 301–325 (1991) CrossRefGoogle Scholar
  38. 38.
    Simons, S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, Berlin (1998) Google Scholar
  39. 39.
    Vallée, C., Lerintiu, C., Chaoufi, J., Fortuné, D., Ban, M., Atchonouglo, K.: A class of non-associated materials: \(n\)-monotone materials—Hooke’s law of elasticity revisited. J. Elast. 112, 111–138 (2013) MATHGoogle Scholar
  40. 40.
    Vallée, C., Fortuné, D., Atchonouglo, K., Chaoufi, J., Lerintiu, C.: Modelling of implicit standard materials. Application to linear coaxial non-associated laws. Discrete Contin. Dyn. Syst., Ser. B 6, 1641–1649 (2013) CrossRefMATHGoogle Scholar
  41. 41.
    Visintin, A.: Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differ. Equ. 47, 273–317 (2013) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Claude Vallée
    • 1
  • Vicenţiu D. Rădulescu
    • 2
    • 3
  • Kossi Atchonouglo
    • 4
  1. 1.Institut Pprime, Université de PoitiersUPR CNRS 3346PoitiersFrance
  2. 2.Department of Mathematics, Faculty of SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  4. 4.Faculté des Sciences, Département de PhysiqueUniversité de LoméLoméTogo

Personalised recommendations