Journal of Elasticity

, Volume 122, Issue 2, pp 131–155 | Cite as

Minimization of Shear Energy in Two Dimensional Continua with Two Orthogonal Families of Inextensible Fibers: The Case of Standard Bias Extension Test

  • F. dell’Isola
  • M. V. d’Agostino
  • A. Madeo
  • P. Boisse
  • D. Steigmann


In this paper we consider Pipkin-type bi-dimensional continua with two orthogonal families of inextensible fibers. We generalize the representation formula due to Rivlin (J. Ration. Mech. Anal. 4(6):951–974, 1955) valid for planar placement fields. They are the sum of two vector functions each of which depends on one real variable only, are piece-wise \(\mathscr{C}^{2}\) and may exhibit jumps of their first gradients on some inextensible fibers. Subsequently we consider a deformation energy depending only on the shear deformation relative to the inextensible families of fibers. In the suitably introduced space of configurations representing considered constrained kinematics, we formulate the relative energy minimization problem for the standard bias extension test problem, i.e., elongation of specimens which (i) have the shape of a rectangle with one side exactly three times longer than the other; (ii) are subject to a relative displacement of shorter sides in the direction parallel to the longer one. By exploiting the material and geometric symmetries, we reduce the aforementioned minimization problem to the determination of a piece-wise real function defined in a real interval. A delicate calculation of the energy first variation produces a necessary stationarity condition: it consists of an integral equation which is to be satisfied by the unknown function. The crucial points of this deduction are represented by (i) the reduction of two-dimensional integrals to one-dimensional integrals by the Fubini Theorem and (ii) the determination of the set of admissible kinematical functions on the basis of imposed boundary conditions, which implies a further integral constraint condition on the unknown function. Therefore the energy minimization problem requires the introduction of a global Lagrange multiplier. The established integral equations are solved numerically with a scheme based on a contraction type iterative process. Finally, the equilibrium shapes of the specimen undergoing large deformations, as determined by the presented model, are shown and briefly discussed.


Gradient elasticity Mechanics of woven fabrics Inextensible fibers Non-local integral equations Extensional bias test 

Mathematics Subject Classification

74B20 74K99 74E99 



The authors must thank the Università di Roma La Sapienza and the MEMOCS Research Centre for their support. The fruitful scientific discussions with P. Seppecher, C. Boutin, A. Luongo, U. Andreaus, M. Cuomo, A. Cazzani, L. Lozzi and E. Turco greatly influenced the investigations which were presented in this paper.


  1. 1.
    Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 248(944), 201–223 (1955) MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(2–4), 375–398 (2013) MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Z. Angew. Math. Mech. 94(12), 978–1000 (2014) MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Andreaus, U., Placidi, L., Rega, G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2603–2616 (2010) MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Auffray, N.: On the algebraic structure of isotropic generalized elasticity theories. Math. Mech. Solids (2013). doi: 10.1177/1081286513507941 Google Scholar
  6. 6.
    Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977) MATHCrossRefGoogle Scholar
  8. 8.
    Baraldi, D., Reccia, E., Cazzani, A., Cecchi, A.: Comparative analysis of numerical discrete and finite element models: The case of in-plane loaded periodic brickwork. Composites: Mechanics, Computations, Applications, An International Journal 4(4), 319–344 (2013) Google Scholar
  9. 9.
    Bel, S., Boisse, P., Dumont, F.: Analyses of the deformation mechanisms of non-crimp fabric composite reinforcements during preforming. Appl. Compos. Mater. 19(3–4), 513–528 (2012) CrossRefADSGoogle Scholar
  10. 10.
    Bersani, A.M., Giorgio, I., Tomassetti, G.: Buckling of an elastic hemispherical shell with an obstacle. Contin. Mech. Thermodyn. 25(2–4), 443–467 (2013) MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, H.S., de Graaf, E.F., Gorczyca, J.L., Harrison, P., Hivet, G., Launay, J., Lee, W., Liu, L., Lomov, S.V., Long, A., de Luycker, E., Morestin, F., Padvoiskis, J., Peng, X.Q., Sherwood, J., Stoilova, Tz., Tao, X.M., Verpoest, I., Willems, A., Wiggers, J., Yu, T.X., Zhu, B.: Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Composites, Part A, Appl. Sci. Manuf. 39(6), 1037–1053 (2008) CrossRefGoogle Scholar
  12. 12.
    Carcaterra, A.: Quantum Euler beam-QUEB: modeling nanobeams vibration. Contin. Mech. Thermodyn. 27(1–2), 145–156 (2015) MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi: 10.1177/1081286514531265 Google Scholar
  14. 14.
    Charmetant, A., Boisse, P., Orliac, J.G., Vidal Sallée, E.: Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos. Sci. Technol. 72, 1352–1360 (2012) CrossRefGoogle Scholar
  15. 15.
    Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014) MathSciNetCrossRefGoogle Scholar
  16. 16.
    d’Agostino, M.V., Giorgio, I., Greco, L., Madeo, A., Boisse, P.: Continuum and discrete models for structures including (quasi-)inextensible elasticae with a view to the design and modeling of composite reinforcements. Int. J. Solids Struct. 59, 1–17 (2015) CrossRefGoogle Scholar
  17. 17.
    Davini, C., Governatori, P.: Nets with hexagonal cell structure. J. Elast. 92(1), 35–59 (2008) MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc., Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009) MATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    dell’Isola, F., Gouin, H., Rotoli, G.: Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations. Eur. J. Mech. B, Fluids 15(4), 545–568 (1996) MATHGoogle Scholar
  20. 20.
    dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C. R. Acad. Sci., Sér. IIb Méc. Phys. Astron. (1995) Google Scholar
  21. 21.
    dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997) MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Z. Angew. Math. Phys. 63(6), 1119–1141 (2012) MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015) MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Eremeyev, V.A., Ivanova, E.A., Morozov, N.F., Strochkov, S.E.: Natural vibrations of nanotubes. Dokl. Phys. 52(8), 431–435 (2007) MATHCrossRefADSGoogle Scholar
  25. 25.
    Eremeyev, V.A., Ivanova, E.A., Morozov, N.F., Strochkov, S.E.: Natural vibrations in a system of nanotubes. J. Appl. Mech. Tech. Phys. 49(2), 291–300 (2008) MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. J. Ration. Mech. Anal. 3(3), 281–301 (1954) MATHMathSciNetGoogle Scholar
  27. 27.
    Everstine, G.C., Pipkin, A.C.: Boundary layers in fiber-reinforced materials. J. Appl. Mech. 40(2), 518–522 (1973) MATHCrossRefADSGoogle Scholar
  28. 28.
    Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008) CrossRefGoogle Scholar
  29. 29.
    Federico, S., Herzog, W.: On the permeability of fibre-reinforced porous materials. Int. J. Solids Struct. 45, 2160–2172 (2008) MATHCrossRefGoogle Scholar
  30. 30.
    Federico, S., Grillo, A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mater. 44, 58–71 (2012) CrossRefGoogle Scholar
  31. 31.
    Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z. Angew. Math. Phys. 65(3), 587–612 (2014) MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014) MATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Grillo, A., Federico, S., Wittum, G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47, 388–401 (2012) CrossRefADSGoogle Scholar
  34. 34.
    Grillo, A., Federico, S., Wittum, G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47(2), 388–401 (2012) CrossRefADSGoogle Scholar
  35. 35.
    Hamila, N., Boisse, P.: Locking in simulation of composite reinforcement deformations. analysis and treatment. Composites, Part A, Appl. Sci. Manuf. 53, 109–117 (2013) CrossRefGoogle Scholar
  36. 36.
    Hamila, N., Boisse, P.: Tension locking in finite-element analyses of textile composite reinforcement deformation. C. R., Méc. 341(6), 508–519 (2013) CrossRefGoogle Scholar
  37. 37.
    Hilgers, M.G., Pipkin, A.C.: Elastic sheets with bending stiffness. Q. J. Mech. Appl. Math. 45(1), 57–75 (1992) MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Hilgers, M.G., Pipkin, A.C.: Energy-minimizing deformations of elastic sheets with bending stiffness. J. Elast. 31(2), 125–139 (1993) MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Hilgers, M.G., Pipkin, A.C.: Bending energy of highly elastic membranes II. Q. Appl. Math. 54(2), 307–316 (1996) MATHMathSciNetGoogle Scholar
  40. 40.
    Hu, M.Z., Kolsky, H., Pipkin, A.C.: Bending theory for fiber-reinforced beams. J. Compos. Mater. 19(3), 235–249 (1985) CrossRefADSGoogle Scholar
  41. 41.
    Launay, J., Hivet, G., Duong, A.V., Boisse, P.: Experimental analysis of the influence of tensions on in plane shear behavior of woven composite reinforcements. Compos. Sci. Technol. 68(2), 506–515 (2008) CrossRefGoogle Scholar
  42. 42.
    Lee, W., Padvoiskis, J., Cao, J., de Luycker, E., Boisse, P., Morestin, F., Chen, J., Sherwood, J.: Bias-extension of woven composite fabrics. Int. J. Material Form. 1(1), 895–898 (2008) CrossRefGoogle Scholar
  43. 43.
    Luongo, A.: Eigensolutions of perturbed nearly defective matrices. J. Sound Vib. 185(3), 377–395 (1995) MATHMathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Luongo, A., Paolone, A., Piccardo, G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998) MATHCrossRefGoogle Scholar
  45. 45.
    Luongo, A., Plgnataro, M.: On the perturbation analysis of interactive buckling in nearly symmetric structures. Int. J. Solids Struct. 29(6), 721–733 (1992) MATHCrossRefGoogle Scholar
  46. 46.
    Madeo, A., Ferretti, M., dell’Isola, F., Boisse, P.: Thick fibrous composite reinforcements behave as special second gradient materials: three point bending of 3D interlocks. Z. Angew. Math. Phys. (2015). doi: 10.1007/s00033-015-0496-z MathSciNetGoogle Scholar
  47. 47.
    Paroni, R.: An existence theorem for inextensible nets with slack. Math. Mech. Solids 17(5), 460–472 (2012) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids (2013). doi: 10.1177/1081286513493107 Google Scholar
  49. 49.
    Piccardo, G., Ranzi, G., Luongo, A.: A direct approach for the evaluation of the conventional modes within the gbt formulation. Thin-Walled Struct. 74, 133–145 (2014) CrossRefGoogle Scholar
  50. 50.
    Piperno, S., Lozzi, L., Rastelli, R., Passacantando, M., Santucci, S.: PMMA nanofibers production by electrospinning. Appl. Surf. Sci. 252(15), 5583–5586 (2006) CrossRefADSGoogle Scholar
  51. 51.
    Pipkin, A.C.: Finite deformations of ideal fiber-reinforced composites. In: Mechanics of Composite Materials, pp. 251–308. Academic Press, Inc., New York (1974) Google Scholar
  52. 52.
    Pipkin, A.C.: Generalized plane deformations of ideal fiber-reinforced materials. Q. Appl. Math. 32, 253–263 (1974) MATHGoogle Scholar
  53. 53.
    Pipkin, A.C.: Finite deformations in materials reinforced with inextensible cords. Finite Elast. 27, 92–102 (1977) Google Scholar
  54. 54.
    Pipkin, A.C.: Energy changes in ideal fiber-reinforced composites. Q. Appl. Math. 35, 455–463 (1978) MATHMathSciNetGoogle Scholar
  55. 55.
    Pipkin, A.C.: Some developments in the theory of inextensible networks. Q. Appl. Math. 38(3), 343–355 (1980) MATHMathSciNetGoogle Scholar
  56. 56.
    Pipkin, A.C.: Plane traction problems for inextensible networks. Q. J. Mech. Appl. Math. 34(4), 415–429 (1981) MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Pipkin, A.C.: Stress channelling and boundary layers in strongly anisotropic solids. In: Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp. 123–145. Springer, Berlin (1984) CrossRefGoogle Scholar
  58. 58.
    Pipkin, A.C.: Continuously distributed wrinkles in fabrics. Arch. Ration. Mech. Anal. 95(2), 93–115 (1986) MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Pipkin, A.C., Rivlin, R.S.: Minimum-weight design for pressure vessels reinforced with inextensible fibers. J. Appl. Mech. 30(1), 103–108 (1963) MATHCrossRefADSGoogle Scholar
  60. 60.
    Pipkin, A.C., Rogers, T.G.: A mixed boundary-value problem for fiber-reinforced materials (mixed boundary value problem for fiber reinforced materials, analyzing shear response in multiply admissible kinematic deformations). Q. Appl. Math. 29, 151–155 (1971) MATHGoogle Scholar
  61. 61.
    Pipkin, A.C., Rogers, T.G.: Plane deformations of incompressible fiber-reinforced materials. J. Appl. Mech. 38(3), 634–640 (1971) MATHCrossRefADSGoogle Scholar
  62. 62.
    Pipkin, A.C., Rogers, T.G.: Infinitesimal plane wrinkling of inextensible networks. J. Elast. 17(1), 35–52 (1987) MATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    Pipkin, A.C.: Stress analysis for fiber-reinforced materials. Adv. Appl. Mech. 19, 1–51 (1979) MATHCrossRefGoogle Scholar
  64. 64.
    Pipkin, A.C.: Equilibrium of Tchebychev nets. In: The Breadth and Depth of Continuum Mechanics, pp. 287–303. Springer, Berlin (1986) CrossRefGoogle Scholar
  65. 65.
    Pipkin, A.C., Sanchez, V.M.: Existence of solutions of plane traction problems for ideal composites. SIAM J. Appl. Math. 26(1), 213–220 (1974) MATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Rivlin, R.S.: Plane strain of a net formed by inextensible cords. J. Ration. Mech. Anal. 4(6), 951–974 (1955) MATHMathSciNetGoogle Scholar
  67. 67.
    Rivlin, R.S.: Constitutive equation for a fiber-reinforced lamina. In: IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, pp. 379–384. Springer, Berlin (1995) CrossRefGoogle Scholar
  68. 68.
    Rivlin, R.S.: Networks of inextensible cords. In: Collected Papers of RS Rivlin, pp. 566–579. Springer, Berlin (1997) CrossRefGoogle Scholar
  69. 69.
    Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z. Angew. Math. Mech. 93(12), 914–927 (2013) MathSciNetCrossRefGoogle Scholar
  70. 70.
    Smith, G.F., Rivlin, R.S.: Stress-deformation relations for anisotropic solids. Arch. Ration. Mech. Anal. 1(1), 107–112 (1957) MATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    Smith, G.F., Rivlin, R.S.: The strain-energy function for anisotropic elastic materials. In: Collected Papers of RS Rivlin, pp. 541–559. Springer, Berlin (1997) CrossRefGoogle Scholar
  72. 72.
    Spencer, A.J.M., et al.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. CISM Courses and Lectures, vol. 282. Springer, Berlin (1984) MATHCrossRefGoogle Scholar
  73. 73.
    Steigmann, D.J., Pipkin, A.C.: Finite deformations of wrinkled membranes. Q. J. Mech. Appl. Math. 42(3), 427–440 (1989) MATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 335(1639), 419–454 (1991) MATHMathSciNetCrossRefADSGoogle Scholar
  75. 75.
    Thiagarajan, G., Deshmukh, K., Wang, Y., Misra, A., Katz, J.L., Spencer, P.: Nano finite element modeling of the mechanical behavior of biocomposites using multi-scale (virtual internal bond) material models. J. Biomed. Mater. Res., Part A 83(2), 332–344 (2007) CrossRefGoogle Scholar
  76. 76.
    Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014) MATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Wang, W.B., Pipkin, A.C.: Inextensible networks with bending stiffness. Q. J. Mech. Appl. Math. 39(3), 343–359 (1986) MATHCrossRefGoogle Scholar
  78. 78.
    Wang, W.B., Pipkin, A.C.: Plane deformations of nets with bending stiffness. Acta Mech. 65(1–4), 263–279 (1987) MATHCrossRefGoogle Scholar
  79. 79.
    Williams, W.O.: Forces in Tchebychev nets. In: Waves and Stability in Continuous Media. Ser. Adv. Math. Appl. Sci, vol. 4, pp. 408–418 (1991) Google Scholar
  80. 80.
    Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • F. dell’Isola
    • 1
    • 5
  • M. V. d’Agostino
    • 2
    • 3
  • A. Madeo
    • 3
    • 5
  • P. Boisse
    • 2
    • 5
  • D. Steigmann
    • 4
    • 5
  1. 1.DISGUniversità di Roma “La Sapienza”RomeItaly
  2. 2.LaMCoSINSA-LyonVilleurbanneFrance
  3. 3.LGCIEINSA-LyonVilleurbanneFrance
  4. 4.University of California at BerkeleyBerkeleyUSA
  5. 5.M&MoCS Research CenterUniversity of L’AquilaCisterna di LatinaItaly

Personalised recommendations