Journal of Elasticity

, Volume 122, Issue 1, pp 75–112 | Cite as

A General Approach to the Solution of Boussinesq’s Problem for Polynomial Pressures Acting over Polygonal Domains



We outline a general approach for extending the classical Boussinesq’s solution to the case of pressures distributed according to a polynomial law of arbitrary order over a polygonal domain. To this end we exploit a generalized version of the Gauss theorem and recent results of potential theory which consistently take into account the singularities affecting the expressions of the fields of interest, an issue which seems to have been overlooked in the existing literature. For linearly varying pressures we derive analytical expressions of displacements, strains and stresses at an arbitrary point of the half-space as a function of the loading function and of the position vectors which define the boundary of the loaded region. We briefly discuss how bilinear and more general pressure distributions can be accommodated in our formulation since the paper is mainly motivated by the interest in developing efficient computational tools for solving 3D problems in foundation engineering and contact mechanics. Finally, comparisons with existing solutions and numerical examples are discussed.


Boussinesq’s problem Half-space Potential theory 

Mathematics Subject Classification (2000)

31C05 74B05 


  1. 1.
    Algin, H.M.: Stresses from linearly distributed pressures over rectangular areas. Int. J. Numer. Anal. Methods Geomech. 24, 681–692 (2000) MATHCrossRefGoogle Scholar
  2. 2.
    Algin, H.M.: Vertical stress formula for pressure over rectangular areas. Geotechnique 51(8), 719–722 (2001) CrossRefGoogle Scholar
  3. 3.
    Barber, J.R.: The solution of heated punch problems by point source methods. Int. J. Eng. Sci. 9, 1165–1170 (1971) CrossRefGoogle Scholar
  4. 4.
    Becker, J.M., Bevis, M.: Love’s problem. Geophys. J. Int. 56, 171–178 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    Boussinesq, J.: Application des potentiels à l’etude de l’équilibre et du mouvement des solides élastiques. Gauthier Villars, Paris (1885) MATHGoogle Scholar
  6. 6.
    Bowles, J.E.: Foundation Analysis and Design. McGraw-Hill, New York (1996) Google Scholar
  7. 7.
    Cerruti, V.: Ricerche intorno all’equilibrio de’ corpi elastici isotropi. In: Reale Accademia de’ Lincei, Classe di Scienze Fisiche, Matematiche e Naturali 3, vol. 13, pp. 81–122 (1882) Google Scholar
  8. 8.
    Davis, R.O., Selvadurai, A.P.S.: Elasticity and Geomechanics. Cambridge University Press, Cambridge (1996) Google Scholar
  9. 9.
    D’Urso, M.G.: New expressions of the gravitational potential and its derivates for the prism. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds.) VII Hotine-Marussi International Symposium on Mathematical Geodesy, pp. 251–256. Springer, Berlin (2012) CrossRefGoogle Scholar
  10. 10.
    D’Urso, M.G.: On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geod. 87(3), 239–252 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    D’Urso, M.G.: Some remarks on the computation of the gravitational potential of masses with linearly varying density. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds.) VIII Hotine-Marussi Symposium, Rome (2013) Google Scholar
  12. 12.
    D’Urso, M.G.: Analytical computation of gravity effects for polyhedral bodies. J. Geod. 88, 13–29 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    D’Urso, M.G.: Gravity effects of polyhedral bodies with linearly varying density. Celest. Mech. Dyn. Astron. 120(4), 349–372 (2014) ADSMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    D’Urso, M.G.: The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv. Geophys. 36(3), 391–425 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    D’Urso, M.G., Marmo, F.: On a generalized Love’s problem. Comput. Geosci. 61, 144–151 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    D’Urso, M.G., Marmo, F.: Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Z. Angew. Math. Mech. 95(1), 91–110 (2015) CrossRefMathSciNetGoogle Scholar
  17. 17.
    D’Urso, M.G., Russo, P.: A new algorithm for point-in polygon test. Surv. Rev. 36(284), 410–422 (2002) CrossRefGoogle Scholar
  18. 18.
    Dydo, J.R., Busby, H.R.: Elasticity solutions for constant and linearly varying load applied to a rectangular surface patch on the elastic half-space. J. Elast. 38, 153–163 (1995) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Eskandari, M., Shodja, H.M.: Green’s functions of an exponentially graded transversely isotropic half-space. Int. J. Solids Struct. 47, 1537–1545 (2010) MATHCrossRefGoogle Scholar
  20. 20.
    Favata, A.: On the Kelvin problem. J. Elast. 109, 189–204 (2012) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gladwell, G.M.L.: Contact Problems in the Classical Theory of Elasticity. Sithoff & Noordhoff, New York (1980) MATHCrossRefGoogle Scholar
  22. 22.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) MATHCrossRefGoogle Scholar
  23. 23.
    Kulchytsky-Zhyhalio, R., Bajkowski, A.: Three-dimensional analytical elasticity solution for loaded functionally graded coated half-space. Mech. Res. Commun. 65, 43–50 (2015) CrossRefGoogle Scholar
  24. 24.
    Lamb, H.: On Boussinesq’s problem. Proc. Lond. Math. Soc. 34, 276–284 (1902) MATHMathSciNetGoogle Scholar
  25. 25.
    Li, J., Berger, E.J.: A Boussinesq–Cerruti solution set for constant and linear distribution of normal and tangential load over triangular area. J. Elast. 63, 137–151 (2001) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Li, J., Berger, E.J.: A semi-analytical approach to three-dimensional normal contact problems with friction. Comput. Mech. 30, 310–322 (2003) MATHCrossRefGoogle Scholar
  27. 27.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927) MATHGoogle Scholar
  28. 28.
    Love, A.E.H.: The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos. Trans. R. Soc. Lond. 228, 377–420 (1929) ADSMATHCrossRefGoogle Scholar
  29. 29.
    Luré, A.I.: Three-Dimesional Problems in the Theory of Elasticity. Wiley, New York (1964) Google Scholar
  30. 30.
    Marmo, F., Rosati, R.: A general approach to the solution of Boussinesq’s problem for polynomial pressures acting over polygonal domains - Supplementary material (2015). Online; accessed May-2015
  31. 31.
    Martin, P., Richardson, J., Gray, L., Berger, J.: Green’s function for a three-dimensional exponentially graded elastic solid. Proc. R. Soc. Lond. Ser. A 458, 1931–1947 (2002) ADSMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Michell, J.H.: Some elementary distributions of stress in three-dimensions. Proc. Lond. Math. Soc. 32, 23–35 (1900) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. J. Appl. Phys. 7, 195–202 (1936) ADSMATHGoogle Scholar
  34. 34.
    Pan, Y., Chou, T.: Green’s function solutions for semi-infinite transversely isotropic materials. Int. J. Eng. Sci. 17, 545–551 (1979) CrossRefGoogle Scholar
  35. 35.
    Pan, Y., Han, F.: Green’s functions for transversely isotropic piezoelectric functionally graded multilayered half spaces. Int. J. Solids Struct. 42, 3207–3233 (2005) MATHCrossRefGoogle Scholar
  36. 36.
    Podio-Guidugli, P., Favata, A.: Elasticity for Geotechnicians. Springer, New York (2014) MATHCrossRefGoogle Scholar
  37. 37.
    Rosati, L., Marmo, F.: A closed form expression of the thermo-mechanical fields induced by a uniform heat source acting over an isotropic half-space. Int. J. Heat Mass Transf. 75, 272–283 (2014) CrossRefGoogle Scholar
  38. 38.
    Rosati, L., Marmo, F., Serpieri, R.: Enhanced solution strategies for the ultimate strength analysis of composite steel-concrete sections subject to axial force and biaxial bending. Comput. Methods Appl. Mech. Eng. 197, 1033–1055 (2008) ADSMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Selvadurai, A.P.S.: The settlement of a rigid circular foundation resting on a half-space exhibiting a near surface elastic non-homogeneity. Int. J. Numer. Anal. Methods Geomech. 20, 351–364 (1996) MATHCrossRefGoogle Scholar
  40. 40.
    Selvadurai, A.P.S.: On Boussinesq’s problem. Int. J. Eng. Sci. 39, 317–322 (2001) MATHCrossRefGoogle Scholar
  41. 41.
    Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    Selvadurai, A.P.S., Katebi, A.: Mindlin’s problem for an incompressible elastic half-space with an exponential variation in the linear elastic shear modulus. Int. J. Eng. Sci. 65, 9–21 (2013) CrossRefMathSciNetGoogle Scholar
  43. 43.
    Selvadurai, A.P.S., Katebi, A.: An adhesive contact problem for an incompressible non-homogeneous elastic half-space. Acta Mech. 226, 249–265 (2015) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Selvadurai, A.P.S., Singh, B.M., Vrbik, J.: A Reissner–Sagoci problem for a non-homogeneous elastic solid. J. Elast. 16, 383–391 (1986) MATHCrossRefGoogle Scholar
  45. 45.
    Sessa, S., D’Urso, M.G.: Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas. In: 11th International Conference of Structural Safety and Reliability, pp. 3163–3169. ICOSSAR, New York (2013) Google Scholar
  46. 46.
    Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1955) Google Scholar
  47. 47.
    Svec, O.J., Gladwell, G.M.L.: An explicit Boussinesq solution for a polynomial distribution of pressure over a triangular region. J. Elast. 1, 167–170 (1971) CrossRefGoogle Scholar
  48. 48.
    Svec, O.J., Gladwell, G.M.L.: A triangular plate bending element for contact problems. Int. J. Solids Struct. 9, 435–446 (1973) CrossRefGoogle Scholar
  49. 49.
    Tang, K.T.: Mathematical Methods for Engineers and Scientists. Springer, Berlin, Heidelberg, New York (2006) Google Scholar
  50. 50.
    Thompson, W., Lord, K.: On the equations of equilibrium of an elastic solid. Camb. Dublin Math. J. 3, 87–89 (1848) Google Scholar
  51. 51.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970) MATHGoogle Scholar
  52. 52.
    Vrettos, C.: The Boussinesq problem for soils with bounded non-homogeneity. Int. J. Numer. Anal. Methods Geomech. 22, 655–669 (1998) MATHCrossRefGoogle Scholar
  53. 53.
    Wang, C.D., Tzeng, C.S., Pan, E., Liao, J.J.: Displacements and stresses due to a vertical point load in an inhomogenous transversely isotropic half-space. Int. J. Rock Mech. Min. Sci. 40, 667–685 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Structures in Engineering and ArchitectureUniversity of Naples Federico IINaplesItaly

Personalised recommendations