Skip to main content
Log in

A General Approach to the Solution of Boussinesq’s Problem for Polynomial Pressures Acting over Polygonal Domains

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We outline a general approach for extending the classical Boussinesq’s solution to the case of pressures distributed according to a polynomial law of arbitrary order over a polygonal domain. To this end we exploit a generalized version of the Gauss theorem and recent results of potential theory which consistently take into account the singularities affecting the expressions of the fields of interest, an issue which seems to have been overlooked in the existing literature. For linearly varying pressures we derive analytical expressions of displacements, strains and stresses at an arbitrary point of the half-space as a function of the loading function and of the position vectors which define the boundary of the loaded region. We briefly discuss how bilinear and more general pressure distributions can be accommodated in our formulation since the paper is mainly motivated by the interest in developing efficient computational tools for solving 3D problems in foundation engineering and contact mechanics. Finally, comparisons with existing solutions and numerical examples are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Algin, H.M.: Stresses from linearly distributed pressures over rectangular areas. Int. J. Numer. Anal. Methods Geomech. 24, 681–692 (2000)

    Article  MATH  Google Scholar 

  2. Algin, H.M.: Vertical stress formula for pressure over rectangular areas. Geotechnique 51(8), 719–722 (2001)

    Article  Google Scholar 

  3. Barber, J.R.: The solution of heated punch problems by point source methods. Int. J. Eng. Sci. 9, 1165–1170 (1971)

    Article  Google Scholar 

  4. Becker, J.M., Bevis, M.: Love’s problem. Geophys. J. Int. 56, 171–178 (2004)

    Article  ADS  Google Scholar 

  5. Boussinesq, J.: Application des potentiels à l’etude de l’équilibre et du mouvement des solides élastiques. Gauthier Villars, Paris (1885)

    MATH  Google Scholar 

  6. Bowles, J.E.: Foundation Analysis and Design. McGraw-Hill, New York (1996)

    Google Scholar 

  7. Cerruti, V.: Ricerche intorno all’equilibrio de’ corpi elastici isotropi. In: Reale Accademia de’ Lincei, Classe di Scienze Fisiche, Matematiche e Naturali 3, vol. 13, pp. 81–122 (1882)

    Google Scholar 

  8. Davis, R.O., Selvadurai, A.P.S.: Elasticity and Geomechanics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  9. D’Urso, M.G.: New expressions of the gravitational potential and its derivates for the prism. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds.) VII Hotine-Marussi International Symposium on Mathematical Geodesy, pp. 251–256. Springer, Berlin (2012)

    Chapter  Google Scholar 

  10. D’Urso, M.G.: On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geod. 87(3), 239–252 (2013)

    Article  ADS  Google Scholar 

  11. D’Urso, M.G.: Some remarks on the computation of the gravitational potential of masses with linearly varying density. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds.) VIII Hotine-Marussi Symposium, Rome (2013)

    Google Scholar 

  12. D’Urso, M.G.: Analytical computation of gravity effects for polyhedral bodies. J. Geod. 88, 13–29 (2014)

    Article  ADS  Google Scholar 

  13. D’Urso, M.G.: Gravity effects of polyhedral bodies with linearly varying density. Celest. Mech. Dyn. Astron. 120(4), 349–372 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. D’Urso, M.G.: The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv. Geophys. 36(3), 391–425 (2015)

    Article  ADS  Google Scholar 

  15. D’Urso, M.G., Marmo, F.: On a generalized Love’s problem. Comput. Geosci. 61, 144–151 (2013)

    Article  ADS  Google Scholar 

  16. D’Urso, M.G., Marmo, F.: Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Z. Angew. Math. Mech. 95(1), 91–110 (2015)

    Article  MathSciNet  Google Scholar 

  17. D’Urso, M.G., Russo, P.: A new algorithm for point-in polygon test. Surv. Rev. 36(284), 410–422 (2002)

    Article  Google Scholar 

  18. Dydo, J.R., Busby, H.R.: Elasticity solutions for constant and linearly varying load applied to a rectangular surface patch on the elastic half-space. J. Elast. 38, 153–163 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eskandari, M., Shodja, H.M.: Green’s functions of an exponentially graded transversely isotropic half-space. Int. J. Solids Struct. 47, 1537–1545 (2010)

    Article  MATH  Google Scholar 

  20. Favata, A.: On the Kelvin problem. J. Elast. 109, 189–204 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gladwell, G.M.L.: Contact Problems in the Classical Theory of Elasticity. Sithoff & Noordhoff, New York (1980)

    Book  MATH  Google Scholar 

  22. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  23. Kulchytsky-Zhyhalio, R., Bajkowski, A.: Three-dimensional analytical elasticity solution for loaded functionally graded coated half-space. Mech. Res. Commun. 65, 43–50 (2015)

    Article  Google Scholar 

  24. Lamb, H.: On Boussinesq’s problem. Proc. Lond. Math. Soc. 34, 276–284 (1902)

    MATH  MathSciNet  Google Scholar 

  25. Li, J., Berger, E.J.: A Boussinesq–Cerruti solution set for constant and linear distribution of normal and tangential load over triangular area. J. Elast. 63, 137–151 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, J., Berger, E.J.: A semi-analytical approach to three-dimensional normal contact problems with friction. Comput. Mech. 30, 310–322 (2003)

    Article  MATH  Google Scholar 

  27. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  28. Love, A.E.H.: The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos. Trans. R. Soc. Lond. 228, 377–420 (1929)

    Article  ADS  MATH  Google Scholar 

  29. Luré, A.I.: Three-Dimesional Problems in the Theory of Elasticity. Wiley, New York (1964)

    Google Scholar 

  30. Marmo, F., Rosati, R.: A general approach to the solution of Boussinesq’s problem for polynomial pressures acting over polygonal domains - Supplementary material (2015). https://app.box.com/s/66vhkpux087nvlmkkchcf6grubns4e35. Online; accessed May-2015

  31. Martin, P., Richardson, J., Gray, L., Berger, J.: Green’s function for a three-dimensional exponentially graded elastic solid. Proc. R. Soc. Lond. Ser. A 458, 1931–1947 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Michell, J.H.: Some elementary distributions of stress in three-dimensions. Proc. Lond. Math. Soc. 32, 23–35 (1900)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. J. Appl. Phys. 7, 195–202 (1936)

    ADS  MATH  Google Scholar 

  34. Pan, Y., Chou, T.: Green’s function solutions for semi-infinite transversely isotropic materials. Int. J. Eng. Sci. 17, 545–551 (1979)

    Article  Google Scholar 

  35. Pan, Y., Han, F.: Green’s functions for transversely isotropic piezoelectric functionally graded multilayered half spaces. Int. J. Solids Struct. 42, 3207–3233 (2005)

    Article  MATH  Google Scholar 

  36. Podio-Guidugli, P., Favata, A.: Elasticity for Geotechnicians. Springer, New York (2014)

    Book  MATH  Google Scholar 

  37. Rosati, L., Marmo, F.: A closed form expression of the thermo-mechanical fields induced by a uniform heat source acting over an isotropic half-space. Int. J. Heat Mass Transf. 75, 272–283 (2014)

    Article  Google Scholar 

  38. Rosati, L., Marmo, F., Serpieri, R.: Enhanced solution strategies for the ultimate strength analysis of composite steel-concrete sections subject to axial force and biaxial bending. Comput. Methods Appl. Mech. Eng. 197, 1033–1055 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Selvadurai, A.P.S.: The settlement of a rigid circular foundation resting on a half-space exhibiting a near surface elastic non-homogeneity. Int. J. Numer. Anal. Methods Geomech. 20, 351–364 (1996)

    Article  MATH  Google Scholar 

  40. Selvadurai, A.P.S.: On Boussinesq’s problem. Int. J. Eng. Sci. 39, 317–322 (2001)

    Article  MATH  Google Scholar 

  41. Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)

    Article  ADS  Google Scholar 

  42. Selvadurai, A.P.S., Katebi, A.: Mindlin’s problem for an incompressible elastic half-space with an exponential variation in the linear elastic shear modulus. Int. J. Eng. Sci. 65, 9–21 (2013)

    Article  MathSciNet  Google Scholar 

  43. Selvadurai, A.P.S., Katebi, A.: An adhesive contact problem for an incompressible non-homogeneous elastic half-space. Acta Mech. 226, 249–265 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  44. Selvadurai, A.P.S., Singh, B.M., Vrbik, J.: A Reissner–Sagoci problem for a non-homogeneous elastic solid. J. Elast. 16, 383–391 (1986)

    Article  MATH  Google Scholar 

  45. Sessa, S., D’Urso, M.G.: Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas. In: 11th International Conference of Structural Safety and Reliability, pp. 3163–3169. ICOSSAR, New York (2013)

    Google Scholar 

  46. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1955)

    Google Scholar 

  47. Svec, O.J., Gladwell, G.M.L.: An explicit Boussinesq solution for a polynomial distribution of pressure over a triangular region. J. Elast. 1, 167–170 (1971)

    Article  Google Scholar 

  48. Svec, O.J., Gladwell, G.M.L.: A triangular plate bending element for contact problems. Int. J. Solids Struct. 9, 435–446 (1973)

    Article  Google Scholar 

  49. Tang, K.T.: Mathematical Methods for Engineers and Scientists. Springer, Berlin, Heidelberg, New York (2006)

    Google Scholar 

  50. Thompson, W., Lord, K.: On the equations of equilibrium of an elastic solid. Camb. Dublin Math. J. 3, 87–89 (1848)

    Google Scholar 

  51. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  52. Vrettos, C.: The Boussinesq problem for soils with bounded non-homogeneity. Int. J. Numer. Anal. Methods Geomech. 22, 655–669 (1998)

    Article  MATH  Google Scholar 

  53. Wang, C.D., Tzeng, C.S., Pan, E., Liao, J.J.: Displacements and stresses due to a vertical point load in an inhomogenous transversely isotropic half-space. Int. J. Rock Mech. Min. Sci. 40, 667–685 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Marmo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmo, F., Rosati, L. A General Approach to the Solution of Boussinesq’s Problem for Polynomial Pressures Acting over Polygonal Domains. J Elast 122, 75–112 (2016). https://doi.org/10.1007/s10659-015-9534-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9534-5

Keywords

Mathematics Subject Classification (2000)

Navigation