# A Spectral Theory Formulation for Elastostatics by Means of Tensor Spherical Harmonics

- 400 Downloads
- 1 Citations

## Abstract

Consider a set of (*N*+1)-phase concentric spherical ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic and is functionally graded (FG) in the radial direction. Determination of the elastic fields when the outermost spherical surface is subjected to a nonuniform loading and the constituent phases are subjected to some prescribed nonuniform body force and eigenstrain fields is of interest. When the outermost layer is an unbounded medium with zero eigenstrain and body force fields, then an *N*-phase multi-inhomogeneous inclusion problem is realized. Based on higher-order spherical harmonics, presenting a three-dimensional strain formulation with a robust form of compatibility equations, a spectral theory of elasticity in the spherical coordinate system is developed. Application of the established spectral theory leads to the exact closed-form solution when the elastic moduli of each phase vary as power-law functions of radius.

## Keywords

3D spectral analysis Tensor spherical harmonics Multi-inhomogeneous inclusion Spherically isotropic Functionally graded materials (FGMs) Exact closed-form elastic fields## Mathematics Subject Classification

74B05 74B10 35Q74## Notes

### Acknowledgements

The authors acknowledge the support of Iran National Science Foundation (INSF).

## References

- 1.Mura, T.: Inclusion problems. Appl. Mech. Rev.
**41**, 15–20 (1988) ADSCrossRefGoogle Scholar - 2.Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev.
**49**, S118–S127 (1996) ADSCrossRefGoogle Scholar - 3.Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff Publishers, Dordrecht (1987) CrossRefGoogle Scholar
- 4.Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927) MATHGoogle Scholar
- 5.Lur’e, A.I.: Three-Dimensional Problems of the Theory of Elasticity. Interscience Publishers, New York (1964) MATHGoogle Scholar
- 6.Matonis, V.A., Small, N.C.: A macroscopic analysis of composites containing layered spherical inclusions. Polym. Eng. Sci.
**9**(2), 90–99 (1969) CrossRefGoogle Scholar - 7.Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids
**27**(4), 315–330 (1979) ADSMATHCrossRefGoogle Scholar - 8.Herve, E., Zaoui, A.: n-Layered inclusion-based micromechanical modelling. Int. J. Eng. Sci.
**31**(1), 1–10 (1993) MATHCrossRefGoogle Scholar - 9.Kanaun, S.K., Kudryavtseva, L.T.: Spherically layered inclusions in a homogeneous elastic medium. J. Appl. Math. Mech.
**50**(4), 483–491 (1986) MathSciNetMATHCrossRefGoogle Scholar - 10.Duan, H.L., Jiao, Y., Yi, X., Huang, Z.P., Wang, J.: Solutions of inhomogeneity problems with graded shells and application to core-shell nanoparticles and composites. J. Mech. Phys. Solids
**54**(7), 1401–1425 (2006) MathSciNetADSMATHCrossRefGoogle Scholar - 11.Lutz, M.P., Ferrari, M.: Compression of a sphere with radially varying elastic moduli. Compos. Eng.
**3**(9), 873–884 (1993) CrossRefGoogle Scholar - 12.Lutz, M.P., Zimmerman, R.W.: Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere. J. Therm. Stresses
**19**(1), 39–54 (1996) MathSciNetCrossRefGoogle Scholar - 13.Lutz, M.P., Zimmerman, R.W.: Effect of the interphase zone on the bulk modulus of a particulate composite. J. Appl. Mech.-T. ASME
**63**(4), 855–861 (1996) ADSMATHCrossRefGoogle Scholar - 14.McClung, H.B.: The elastic sphere under nonsymmetric loading. J. Elast.
**21**(1), 1–26 (1989) MathSciNetMATHCrossRefGoogle Scholar - 15.Shodja, H.M., Sarvestani, A.S.: Elastic fields in double inhomogeneity by the equivalent inclusion method. J. Appl. Mech.-T. ASME
**68**(1), 3–10 (2001) ADSMATHCrossRefGoogle Scholar - 16.Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A
**241**, 376–396 (1957) MathSciNetADSMATHCrossRefGoogle Scholar - 17.Maiti, M.: Stresses in anisotropic nonhomogeneous sphere. J. Eng. Mech.
**101**, 101–108 (1975) Google Scholar - 18.Chen, W.Q.: Couple free vibrations of spherically isotropic hollow spheres. Ph.D. dissertation, Zhejiang University, Hangzhou, China, in Chinese (1996) Google Scholar
- 19.Hu, H.C.: On the general theory of elasticity for a spherically isotropic medium. Acta Sci. Sin.
**3**, 247–260 (1954) Google Scholar - 20.Chen, W.T.: On some problems in spherically isotropic elastic materials. J. Appl. Mech.-T. ASME
**33**, 539–546 (1966) ADSMATHCrossRefGoogle Scholar - 21.Puro, A.É.: Variable separation in elasticity-theory equations for spherically transversely isotropic inhomogeneous bodies. Sov. Appl. Mech.
**16**(2), 117–121 (1980) ADSMATHCrossRefGoogle Scholar - 22.Hao-jiang, D., Yong-jian, R.: Equilibrium problems of spherically isotropic bodies. Appl. Math. Mech.
**12**(2), 155–162 (1991) CrossRefGoogle Scholar - 23.Chen, W.Q.: Stress distribution in a rotating elastic functionally graded material hollow sphere with spherical isotropy. J. Strain Anal. Eng. Des.
**35**(1), 13–20 (2000) CrossRefGoogle Scholar - 24.Chau, K.T.: Toroidal vibrations of anisotropic spheres with spherical isotropy. J. Appl. Mech.-T. ASME
**65**(1), 59–65 (1998) ADSCrossRefGoogle Scholar - 25.Chen, W.Q., Cai, J.B., Ye, G.R., Ding, H.J.: On eigenfrequencies of an anisotropic sphere. J. Appl. Mech.-T. ASME
**67**(2), 422–424 (2000) ADSMATHCrossRefGoogle Scholar - 26.Cohen, H., Shah, A.H., Ramakrishnan, C.V.: Free vibrations of a spherically isotropic hollow sphere. Acustica
**26**(6), 329–333 (1972) MATHGoogle Scholar - 27.Wang, X.: An elastodynamic solution for an anisotropic hollow sphere. Int. J. Solids Struct.
**31**(7), 903–911 (1994) MATHCrossRefGoogle Scholar - 28.Chen, W.Q., Ding, H.J.: Free vibration of multi-layered spherically isotropic hollow spheres. Int. J. Mech. Sci.
**43**(3), 667–680 (2001) MATHCrossRefGoogle Scholar - 29.Ding, H.J., Wang, H.M., Chen, W.Q.: Elastodynamic solution for spherically symmetric problems of a multilayered hollow sphere. Arch. Appl. Mech.
**73**(11–12), 753–768 (2004) ADSMATHCrossRefGoogle Scholar - 30.Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys.
**52**(2), 299–339 (1980) MathSciNetADSCrossRefGoogle Scholar - 31.Gel’fand, I.M., Minlos, R.A., Shapiro, Z.Ya.: Representations of the Rotation and Lorentz Groups and Their Applications. Pergamon Press, Oxford (1963) MATHGoogle Scholar
- 32.Zerilli, F.J.: Tensor harmonics in canonical form for gravitational radiation and other applications. J. Math. Phys.
**11**(7), 2203–2208 (1970) MathSciNetADSCrossRefGoogle Scholar - 33.Mathews, J.: Gravitational multipole radiation. J. Soc. Ind. Appl. Math.
**10**, 768–780 (1962) MathSciNetMATHCrossRefGoogle Scholar - 34.Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974) MATHGoogle Scholar
- 35.Hatami-Marbini, H., Shodja, H.M.: On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces. Int. J. Solids Struct.
**45**(22–23), 5831–5843 (2008) MATHCrossRefGoogle Scholar