Journal of Elasticity

, Volume 111, Issue 1, pp 67–89 | Cite as

A Spectral Theory Formulation for Elastostatics by Means of Tensor Spherical Harmonics



Consider a set of (N+1)-phase concentric spherical ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic and is functionally graded (FG) in the radial direction. Determination of the elastic fields when the outermost spherical surface is subjected to a nonuniform loading and the constituent phases are subjected to some prescribed nonuniform body force and eigenstrain fields is of interest. When the outermost layer is an unbounded medium with zero eigenstrain and body force fields, then an N-phase multi-inhomogeneous inclusion problem is realized. Based on higher-order spherical harmonics, presenting a three-dimensional strain formulation with a robust form of compatibility equations, a spectral theory of elasticity in the spherical coordinate system is developed. Application of the established spectral theory leads to the exact closed-form solution when the elastic moduli of each phase vary as power-law functions of radius.


3D spectral analysis Tensor spherical harmonics Multi-inhomogeneous inclusion Spherically isotropic Functionally graded materials (FGMs) Exact closed-form elastic fields 

Mathematics Subject Classification

74B05 74B10 35Q74 



The authors acknowledge the support of Iran National Science Foundation (INSF).


  1. 1.
    Mura, T.: Inclusion problems. Appl. Mech. Rev. 41, 15–20 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49, S118–S127 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff Publishers, Dordrecht (1987) CrossRefGoogle Scholar
  4. 4.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927) MATHGoogle Scholar
  5. 5.
    Lur’e, A.I.: Three-Dimensional Problems of the Theory of Elasticity. Interscience Publishers, New York (1964) MATHGoogle Scholar
  6. 6.
    Matonis, V.A., Small, N.C.: A macroscopic analysis of composites containing layered spherical inclusions. Polym. Eng. Sci. 9(2), 90–99 (1969) CrossRefGoogle Scholar
  7. 7.
    Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27(4), 315–330 (1979) ADSMATHCrossRefGoogle Scholar
  8. 8.
    Herve, E., Zaoui, A.: n-Layered inclusion-based micromechanical modelling. Int. J. Eng. Sci. 31(1), 1–10 (1993) MATHCrossRefGoogle Scholar
  9. 9.
    Kanaun, S.K., Kudryavtseva, L.T.: Spherically layered inclusions in a homogeneous elastic medium. J. Appl. Math. Mech. 50(4), 483–491 (1986) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Duan, H.L., Jiao, Y., Yi, X., Huang, Z.P., Wang, J.: Solutions of inhomogeneity problems with graded shells and application to core-shell nanoparticles and composites. J. Mech. Phys. Solids 54(7), 1401–1425 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Lutz, M.P., Ferrari, M.: Compression of a sphere with radially varying elastic moduli. Compos. Eng. 3(9), 873–884 (1993) CrossRefGoogle Scholar
  12. 12.
    Lutz, M.P., Zimmerman, R.W.: Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere. J. Therm. Stresses 19(1), 39–54 (1996) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lutz, M.P., Zimmerman, R.W.: Effect of the interphase zone on the bulk modulus of a particulate composite. J. Appl. Mech.-T. ASME 63(4), 855–861 (1996) ADSMATHCrossRefGoogle Scholar
  14. 14.
    McClung, H.B.: The elastic sphere under nonsymmetric loading. J. Elast. 21(1), 1–26 (1989) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Shodja, H.M., Sarvestani, A.S.: Elastic fields in double inhomogeneity by the equivalent inclusion method. J. Appl. Mech.-T. ASME 68(1), 3–10 (2001) ADSMATHCrossRefGoogle Scholar
  16. 16.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376–396 (1957) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Maiti, M.: Stresses in anisotropic nonhomogeneous sphere. J. Eng. Mech. 101, 101–108 (1975) Google Scholar
  18. 18.
    Chen, W.Q.: Couple free vibrations of spherically isotropic hollow spheres. Ph.D. dissertation, Zhejiang University, Hangzhou, China, in Chinese (1996) Google Scholar
  19. 19.
    Hu, H.C.: On the general theory of elasticity for a spherically isotropic medium. Acta Sci. Sin. 3, 247–260 (1954) Google Scholar
  20. 20.
    Chen, W.T.: On some problems in spherically isotropic elastic materials. J. Appl. Mech.-T. ASME 33, 539–546 (1966) ADSMATHCrossRefGoogle Scholar
  21. 21.
    Puro, A.É.: Variable separation in elasticity-theory equations for spherically transversely isotropic inhomogeneous bodies. Sov. Appl. Mech. 16(2), 117–121 (1980) ADSMATHCrossRefGoogle Scholar
  22. 22.
    Hao-jiang, D., Yong-jian, R.: Equilibrium problems of spherically isotropic bodies. Appl. Math. Mech. 12(2), 155–162 (1991) CrossRefGoogle Scholar
  23. 23.
    Chen, W.Q.: Stress distribution in a rotating elastic functionally graded material hollow sphere with spherical isotropy. J. Strain Anal. Eng. Des. 35(1), 13–20 (2000) CrossRefGoogle Scholar
  24. 24.
    Chau, K.T.: Toroidal vibrations of anisotropic spheres with spherical isotropy. J. Appl. Mech.-T. ASME 65(1), 59–65 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    Chen, W.Q., Cai, J.B., Ye, G.R., Ding, H.J.: On eigenfrequencies of an anisotropic sphere. J. Appl. Mech.-T. ASME 67(2), 422–424 (2000) ADSMATHCrossRefGoogle Scholar
  26. 26.
    Cohen, H., Shah, A.H., Ramakrishnan, C.V.: Free vibrations of a spherically isotropic hollow sphere. Acustica 26(6), 329–333 (1972) MATHGoogle Scholar
  27. 27.
    Wang, X.: An elastodynamic solution for an anisotropic hollow sphere. Int. J. Solids Struct. 31(7), 903–911 (1994) MATHCrossRefGoogle Scholar
  28. 28.
    Chen, W.Q., Ding, H.J.: Free vibration of multi-layered spherically isotropic hollow spheres. Int. J. Mech. Sci. 43(3), 667–680 (2001) MATHCrossRefGoogle Scholar
  29. 29.
    Ding, H.J., Wang, H.M., Chen, W.Q.: Elastodynamic solution for spherically symmetric problems of a multilayered hollow sphere. Arch. Appl. Mech. 73(11–12), 753–768 (2004) ADSMATHCrossRefGoogle Scholar
  30. 30.
    Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52(2), 299–339 (1980) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Gel’fand, I.M., Minlos, R.A., Shapiro, Z.Ya.: Representations of the Rotation and Lorentz Groups and Their Applications. Pergamon Press, Oxford (1963) MATHGoogle Scholar
  32. 32.
    Zerilli, F.J.: Tensor harmonics in canonical form for gravitational radiation and other applications. J. Math. Phys. 11(7), 2203–2208 (1970) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Mathews, J.: Gravitational multipole radiation. J. Soc. Ind. Appl. Math. 10, 768–780 (1962) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974) MATHGoogle Scholar
  35. 35.
    Hatami-Marbini, H., Shodja, H.M.: On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces. Int. J. Solids Struct. 45(22–23), 5831–5843 (2008) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Civil EngineeringSharif University of TechnologyTehranIran
  2. 2.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran

Personalised recommendations