Journal of Elasticity

, Volume 110, Issue 1, pp 111–116 | Cite as

Spacetime Interpretation of Torsion in Prismatic Bodies

  • G. Domokos
  • G. W. Gibbons
Research Note


A non-linear theory for the plastic deformation of prismatic bodies is constructed which interpolates between Prandtl’s linear soap-film approximation and Nádai’s sand-pile model. Geometrically Prandtl’s soap film and Nádai’s wavefront are unified into a single smooth surface of constant mean curvature in three-dimensional Minkowski spacetime.


Torsion Prismatic body Sandpile analogy Minkowski spacetime 

Mathematics Subject Classification

74C05 83A05 



The first author was a Visiting Fellow Commoner at Trinity College, Cambridge during part of this collaboration. This research was supported by the Hungarian National Foundation (OTKA) Grant K104601. The authors thank Tamás Ther for his help with Fig. 1.


  1. 1.
    Prandtl, L.: Zur torsion von prismatischen stäben. Z. Phys. 4, 758–770 (1903) MATHGoogle Scholar
  2. 2.
    Nádai, A.: Z. Angew. Math. Mech. 3, 442 (1923) MATHCrossRefGoogle Scholar
  3. 3.
    Alouges, F., Desimone, A.: Plastic torsion and related problems. J. Elast. 55, 231–237 (1999) MATHCrossRefGoogle Scholar
  4. 4.
    Chakrabarty, J.: Theory of Plasticity. McGraw-Hill, New York (1987), p. 18 & ff Google Scholar
  5. 5.
    de Saint-Venant, B.: De la torsion de prismes, avec des considérations sur leur flexion. Mém. Savants étrang. 24, 233 (1855) Google Scholar
  6. 6.
    Nádai, A.: Plasticity: A Mechanics of the Plastic State of Matter. McGraw-Hill, New York (1931) MATHCrossRefGoogle Scholar
  7. 7.
    Nádai, A.: Theory of Flow and Fracture of Solids. McGraw-Hill, New York (1950) Google Scholar
  8. 8.
    Gibbons, G.W.: Born-Infeld particles and Dirichlet p-branes. Nucl. Phys. B 514, 603 (1998). arXiv:hep-th/9709027 MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. A 144, 425 (1935) ADSCrossRefGoogle Scholar
  10. 10.
    Born, M.: Théorie non-linéare du champ électromagnétique. Ann. Inst. Poincaré 7, 155 (1939) MathSciNetGoogle Scholar
  11. 11.
    Pryce, M.H.: The two-dimensional electrostatic solutions of Born’s new field equations. Proc. Camb. Philos. Soc. 31, 50 (1935) ADSCrossRefGoogle Scholar
  12. 12.
    Pryce, M.H.: On a uniqueness theorem. Proc. Camb. Philos. Soc. 31, 625 (1935) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Dept. Mechanics, Materials, and StructuresBudapest University of Technology and EconomicsBudapestHungary
  2. 2.D.A.M.T.P.Cambridge UniversityCambridgeUK

Personalised recommendations