Journal of Elasticity

, Volume 107, Issue 2, pp 125–130 | Cite as

A Comment on the Formation of Objective Response Functions

  • James Casey
  • Michael M. Carroll


The well-known method for obtaining objective response functions in continuum mechanics, due to W. Noll, is reviewed and an objection to its logic, raised by R.S. Rivlin and G.F. Smith, is evaluated.


Invariance requirements Objectivity conditions Finite elasticity Continuum mechanics 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200, 523–541 (1950) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Richter, H.: Zur elastizitätstheorie endlicher verformungen. Math. Nachr. 8, 65–73 (1952). Translated in: Foundations of Elasticity Theory. Gordon and Breach, New York, 1965 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Noll, W.: On the continuity of the solid and liquid states. J. Ration. Mech. Anal. 4, 3–81 (1955) MathSciNetMATHGoogle Scholar
  4. 4.
    Rivlin, R.S., Ericksen, J.L.: Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955) MathSciNetMATHGoogle Scholar
  5. 5.
    Green, A.E., Rivlin, R.S.: The mechanics of non-linear materials with memory, Part I. Arch. Ration. Mech. Anal. 1, 1–21 (1957) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958) MATHCrossRefGoogle Scholar
  7. 7.
    Truesdell, C.: The principles of continuum mechanics. Colloquium Lectures in Pure and Applied Science, No. 5. Field Research Laboratory, Socony Mobil Oil Company, Inc., Dallas, Texas (1960) Google Scholar
  8. 8.
    Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3, pp. 1–579. Springer, Berlin (1965) Google Scholar
  9. 9.
    Chadwick, P.: Continuum Mechanics. Allen & Unwin, London (1976). Dover Publications, Inc., Mineola, New York (1999) Google Scholar
  10. 10.
    Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic Press, New York (1977) MATHGoogle Scholar
  11. 11.
    Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981) MATHGoogle Scholar
  12. 12.
    Ogden, R.W.: Non-Linear Elastic Deformations. Ellis Harwood, Chichester (1984) and Halsted Press/Wiley, New York (1984); Dover, New York (1997) Google Scholar
  13. 13.
    Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2000) MATHGoogle Scholar
  14. 14.
    Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000) MATHGoogle Scholar
  15. 15.
    Gonzalez, O., Stuart, A.M.: A First Course in Continuum Mechanics. Cambridge University Press, Cambridge (2008) MATHGoogle Scholar
  16. 16.
    Batra, R.C.: Elements of Continuum Mechanics. American Institute of Aeronautics and Astronautics, Reston (2006) MATHGoogle Scholar
  17. 17.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) Google Scholar
  18. 18.
    Rivlin, R.S., Smith, G.F.: A note on material frame indifference. Int. J. Solids Struct. 23, 1639–1643 (1987) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Mechanical Engineering & Materials ScienceRice UniversityHoustonUSA

Personalised recommendations