Journal of Elasticity

, Volume 107, Issue 1, pp 81–104 | Cite as

Reconciliation of Local and Global Symmetries for a Class of Crystals with Defects

  • Gareth P. Parry
  • Rachel Sigrist


We consider the symmetry of discrete and continuous crystal structures which are compatible with a given choice of dislocation density tensor. By introducing the notion of a ‘defective point group’ (determined by the dislocation density tensor), we generalize the notion of Ericksen–Pitteri neighborhoods to this context.


Crystals Defects Lie groups 

Mathematics Subject Classification (2000)

74A20 74E25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslander, L., Green, L., Hahn, F.: Flows on Homogeneous Spaces. Annals of Mathematics Studies, vol. 53. Princeton University Press, Princeton (1963) MATHGoogle Scholar
  2. 2.
    Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. R. Soc. Lond. A 338, 389–450 (1992) CrossRefMATHADSGoogle Scholar
  3. 3.
    Bourbaki, N.: Elements of Mathematics; General Topology. Hermann, Paris (1966) Google Scholar
  4. 4.
    Cermelli, P., Mazzucco, E.: A note on the model of crystaline defects in Ericksen–Pitteri neighbourhoods. Physica D, Nonlinear Phenom. 99, 350–358 (1996) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Cermelli, P., Parry, G.P.: The structure of uniform discrete defective crystals. Contin. Mech. Thermodyn. 18, 47–61 (2006) CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    Davini, C.: A proposal for a continuum theory of defective crystals. Arch. Ration. Mech. Anal. 96, 295–317 (1986) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ericksen, J.L.: On groups occurring in the theory of crystal multi-lattices. Arch. Ration. Mech. Anal. 148, 145–178 (1999) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fosdick, R.L., Hertog, B.: Material symmetry and crystals. Arch. Ration. Mech. Anal. 117, 43–72 (1990) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hall, P.: A contribution to the theory of groups of prime power order. Proc. Lond. Math. Soc., Ser. 2 36, 29–95 (1933) CrossRefGoogle Scholar
  10. 10.
    Johnson, D.L.: Presentations of Groups, 2nd edn. London Mathematical Society Student Texts, vol. 15. Cambridge University Press, Cambridge (1997) MATHGoogle Scholar
  11. 11.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Dover, New York (1976) MATHGoogle Scholar
  12. 12.
    Mal’cev, A.: On a class of homogeneous spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 13, 9–32 (1949). Am. Math. Soc. Transl. 39 MathSciNetGoogle Scholar
  13. 13.
    Parry, G.P., S̆ilhavý, M.: Elastic scalar invariants in the theory of defective crystals. Proc. R. Soc. Lond. A 455, 4333–4346 (1999) CrossRefMATHADSGoogle Scholar
  14. 14.
    Parry, G.P.: Group properties of defective crystal structures. Math. Mech. Solids 8, 515–537 (2003) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Parry, G.P.: Symmetries of continuously defective crystals. In: S̆ilhavý, M. (ed.) Mathematical Modelling of Bodies with Complicated Bulk and Boundary Behaviour. Quaderni di Mathematica, vol. 20, pp. 135–158. (2007). Dipartimento di Matematica della Seconda Università di Napoli Google Scholar
  16. 16.
    Parry, G.P.: Rotational symmetries of crystals with defects. J. Elast. 94, 147–166 (2009) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Parry, G.P.: Elastic symmetries of defective crystals. J. Elast. 101, 101–120 (2010) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Pitteri, M.: Reconciliation of local and global symmetries of crystals. J. Elast. 14, 175–190 (1984) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals. Chapman and Hall/CRC, Boca Raton (2003) MATHGoogle Scholar
  20. 20.
    Thurston, W.: Three Dimensional Geometry and Topology, vol. 1. Princeton University Press, Princeton (1997) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations