Advertisement

Journal of Elasticity

, Volume 105, Issue 1–2, pp 29–48 | Cite as

A Simple Explicit Formula for the Voigt-Reuss-Hill Average of Elastic Polycrystals with Arbitrary Crystal and Texture Symmetries

  • Chi-Sing Man
  • Mojia Huang
Original Paper

Abstract

The Voigt-Reuss-Hill (VRH) average provides a simple way to estimate the elastic constants of a textured polycrystal in terms of its crystallographic texture and the elastic constants of the constituting crystallites. Empirically the VRH estimates were found in most cases to have an accuracy comparable to those obtained by more sophisticated techniques such as self-consistent schemes. In this paper we determine, in the space of fourth-order tensors with major and minor symmetries, a special set of irreducible basis tensors, with which we obtain a simple explicit formula for the VRH average for elastic polycrystals with arbitrary crystal and texture symmetries. Our formula is correct to first order in the texture coefficients.

Keywords

Polycrystals Texture Anisotropy Voigt-Reuss-Hill average Irreducible tensor basis Elasticity 

Mathematics Subject Classification (2000)

74A20 74A60 74E10 74E15 74E25 74B05 20C35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirsekorn, S.: Elastic properties of polycrystals: a review. Textures Microstruct. 12, 1–14 (1990) CrossRefGoogle Scholar
  2. 2.
    Humbert, M., Diz, J.: Some practical features for calculating the polycrystalline elastic properties from texture. J. Appl. Crystallogr. 24, 978–981 (1991) CrossRefGoogle Scholar
  3. 3.
    Zuo, L., Humbert, M., Esling, C.: Elastic properties of polycrystals in the Voigt-Reuss-Hill approximation. J. Appl. Crystallogr. 25, 751–755 (1992) CrossRefGoogle Scholar
  4. 4.
    Hu, H.: Elastic properties of cold-rolled and annealed sheets of phosphorus steel having high normal plastic anisotropy. Texture Cryst. Solids 4, 111–127 (1980) CrossRefGoogle Scholar
  5. 5.
    Hirao, M., Aoki, K., Fukuoka, H.: Texture of polycrystalline metals characterized by ultrasonic velocity measurements. J. Acoust. Soc. Am. 81, 1434–1440 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics: Theory and Application. Addison-Wesley, Reading (1981) MATHGoogle Scholar
  7. 7.
    Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988) Google Scholar
  8. 8.
    Man, C.-S., Huang, M.: A representation theorem for material tensors of weakly-textured polycrystals and its applications in elasticity. J. Elast. (2010). doi: 10.1007/s10659-010-9284-3 Google Scholar
  9. 9.
    Man, C.-S.: On the constitutive equations of some weakly-textured materials. Arch. Ration. Mech. Anal. 143, 77–103 (1998) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Li, Y., Thompson, R.B.: Relations between elastic constants C ij and texture parameters for hexagonal materials. J. Appl. Phys. 67, 2663–2665 (1990) ADSCrossRefGoogle Scholar
  11. 11.
    Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43, 15–41 (1990) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Roman, S.: Advanced Linear Algebra, 3rd edn. Springer, New York (2008) MATHGoogle Scholar
  13. 13.
    Morris, P.R.: Polycrystal elastic constants for triclinic crystal and physical symmetry. J. Appl. Crystallogr. 39, 502–508 (2006) CrossRefGoogle Scholar
  14. 14.
    Roe, R.-J.: Inversion of pole figures for materials having cubic crystal symmetry. J. Appl. Phys. 37, 2069–2072 (1966) ADSCrossRefGoogle Scholar
  15. 15.
    Huang, M.: Elastic constants of a polycrystal with an orthorhombic texture. Mech. Mater. 36, 623–632 (2004) CrossRefGoogle Scholar
  16. 16.
    Morris, P.R.: Elastic constants of polycrystals. Int. J. Eng. Sci. 8, 49–61 (1970) CrossRefGoogle Scholar
  17. 17.
    Roe, R.-J.: Description of crystallite orientation in polycrystalline materials, iii: General solution to pole figures. J. Appl. Phys. 36, 2024–2031 (1965) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA
  2. 2.Institute for Advanced Study, and Institute of Engineering MechanicsNanchang UniversityNanchangChina

Personalised recommendations