Journal of Elasticity

, Volume 103, Issue 2, pp 173–187 | Cite as

A Strain Energy Function for Vulcanized Rubbers



A three-parameter strain energy function is developed to model the nonlinearly elastic response of rubber-like materials. The development of the model is phenomenological, based on data from the classic experiments of Treloar, Rivlin and Saunders, and Jones and Treloar on sheets of vulcanized rubber. A simple two-parameter version, similar to the Mooney-Rivlin and Gent-Thomas strain energies, provides an accurate fit with all of the data from Rivlin and Saunders and Jones and Treloar, as well as with Treloar’s data for deformations for which the principal deformation invariant I 1 has values in the range 3≤I 1≤20.


Finite elasticity Strain energy Constitutive equations Rubber Elastomer 

Mathematics Subject Classification

74805 74820 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Clarendon, Oxford (1975) Google Scholar
  2. 2.
    Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000) CrossRefGoogle Scholar
  3. 3.
    Treloar, L.R.G.: Stress-strain data for vulcanized rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944) CrossRefGoogle Scholar
  4. 4.
    Rivlin, R.S., Saunders, D.S.: Large elastic deformation of isotropic materials—VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A 243, 251–288 (1951) CrossRefADSMATHGoogle Scholar
  5. 5.
    Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D, Appl. Phys. 27, 1285–1304 (1975) CrossRefADSGoogle Scholar
  6. 6.
    Valanis, K.C., Landel, R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002 (1967) CrossRefADSGoogle Scholar
  7. 7.
    Obata, Y., Kawabata, S., Kawai, H.: Mechanical properties of natural rubber vulcanizates in finite deformation. J. Polym. Sci. 8, 903–919 (1970) Google Scholar
  8. 8.
    Gent, A.N., Thomas, A.G.: Forms for the stored (strain) energy function for rubber. J. Polym. Sci. 28, 625–628 (1958) CrossRefADSGoogle Scholar
  9. 9.
    Sawyers, K.N.: On the possible values of the strain invariants for isochoric deformation. J. Elast. 7, 99–102 (1977) CrossRefGoogle Scholar
  10. 10.
    Agarwal, V.K., Carroll, M.M.: Admissibility conditions on principal strain invariants. Acta Mech. 177, 89–96 (2004) CrossRefGoogle Scholar
  11. 11.
    Klingbeil, W.W., Shield, R.T.: Some numerical investigations on empirical strain-energy functions in the large axisymmetric extensions of rubber membranes. J. Appl. Math. Phys. 15, 608–629 (1964) CrossRefGoogle Scholar
  12. 12.
    Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Carroll, M.M.: Molecular chain networks and strain energy functions in rubber elasticity. Int. J. Eng. Sci. (submitted for publication) Google Scholar
  14. 14.
    Criscione, J.C.: Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing. J. Elast. 70, 129–147 (2003) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Carroll, M.M.: Compressible isotropic strain energies that support universal irrotational finite deformations. Q. J. Mech. Appl. Math. 58, 601–614 (2005) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA

Personalised recommendations