Journal of Elasticity

, 98:111 | Cite as

Note on the Necessary Conditions for P and S Wave Propagation in a Homogeneous Isotropic Elastic Solid

  • M. G. Rochester
Classroom Note


The proof that being irrotational/solenoidal is sufficient for a displacement field in a homogeneous isotropic elastic solid to be propagated as a P/S wave is utterly familiar. Because a proof of the necessity of these conditions seems not to be given in standard texts, we here present a simple argument that this is the case.

Elasticity P waves S waves Seismology 

Mathematics Subject Classification (2000)

74B05 74J10 86A15 


  1. 1.
    Aki, K., Richards, P.G.: Quantitative Seismology: Theory and Methods, 2nd edn. Freeman, New York (2002), pp. 67–68, 91 Google Scholar
  2. 2.
    Ben-Menahem, A., Singh, S.J.: Seismic Waves and Sources. Springer, New York (1981), pp. 25, 62–63 MATHGoogle Scholar
  3. 3.
    Brekhovskikh, L., Goncharov, V.: Mechanics of Continua and Wave Dynamics. Springer, New York (1985), pp. 55–58 Google Scholar
  4. 4.
    Bullen, K.E., Bolt, B.A.: An Introduction to the Theory of Seismology, 4th edn. Cambridge University Press, Cambridge (1985), pp. 87–88 MATHGoogle Scholar
  5. 5.
    Dahlen, F.A., Tromp, J.: Theoretical Global Seismology. Princeton University Press, Princeton (1998), pp. 81–83 Google Scholar
  6. 6.
    Davis, J.L.: Wave Propagation in Solids and Fluids. Springer, New York (1988), pp. 298–301 MATHGoogle Scholar
  7. 7.
    Elmore, W.C., Heald, M.A.: Physics of Waves. Dover, New York (1985), pp. 225–228 Google Scholar
  8. 8.
    Fowler, C.M.R.: The Solid Earth: An Introduction to Global Geophysics. Cambridge University Press, Cambridge (1990), pp. 77–78, 432–434 Google Scholar
  9. 9.
    Garland, G.D.: Introduction to Geophysics, 2nd edn. Saunders, Philadelphia (1979), pp. 29–30 Google Scholar
  10. 10.
    Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Handbuch der Physik, vol. 6a-2, pp. 1–295. Springer, Berlin (1972) Google Scholar
  11. 11.
    Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981), pp. 223–225 MATHGoogle Scholar
  12. 12.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 2nd edn. Pergamon, Elmsford (1970), pp. 102–103 Google Scholar
  13. 13.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927), pp. 293–294 MATHGoogle Scholar
  14. 14.
    Nadeau, G.: Introduction to Elasticity. Holt, Rinehart & Winston, New York (1964), pp. 209–212 Google Scholar
  15. 15.
    Officer, C.B.: Introduction to Theoretical Geophysics. Springer, New York (1974), pp. 188–189 Google Scholar
  16. 16.
    Pujol, J.: Elastic Wave Propagation and Generation in Seismology. Cambridge University Press, Cambridge (2003), pp. 118–123 Google Scholar
  17. 17.
    Sedov, L.I.: A Course in Continuum Mechanics, vol. 4, pp. 102–106. Wolters-Noordhoff, Groningen (1972) Google Scholar
  18. 18.
    Slawinski, M.: Seismic Waves and Rays in Elastic Media. Elsevier, Amsterdam (2003), pp. 130–134 Google Scholar
  19. 19.
    Sommerfeld, A.: Mechanics of Deformable Bodies. Academic Press, San Diego (1950), pp. 105–107 MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Earth SciencesMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations