Advertisement

Journal of Elasticity

, Volume 98, Issue 2, pp 117–140 | Cite as

Ellipsoidal Domain with Piecewise Nonuniform Eigenstrain Field in One of Joined Isotropic Half-Spaces

  • R. Avazmohammadi
  • R. Hashemi
  • H. M. Shodja
  • M. H. Kargarnovin
Article

Abstract

Consider an arbitrarily oriented ellipsoidal domain near the interface of an isotropic bimaterial space. It is assumed that a general class of piecewise nonuniform dilatational eigenstrain field is distributed within the ellipsoidal domain. Two theorems relevant to prediction of the nature of the induced displacement field for the interior and exterior points of the ellipsoidal domain are stated and proved. As a resultant the exact analytical expression of the elastic fields are obtained rigorously. In this work a new Eshelby-like tensor, A is introduced. In particular, the closed-form expressions for A associated with the interior points of spherical and cylindrical inclusion are derived. The stress field is presented for a single ellipsoidal inclusion which undergoes a Gaussian distribution of eigenstrain field and one of the principal axes of the domain is perpendicular to the interface. For the limiting case of spherical inclusion the closed-form solution is obtained and the associated strain energy is discussed. For further demonstration, two examples of two concentric spheres and three concentric cylinders with eigenstrain field distributions which are descriptive of the general class of functions defined in this paper. The effect of some parameters such as distance between the inclusion and the interface, and the ratio of the shear moduli of the two media on the induced elastic fields are examined.

Keywords

Micromechanics Bimaterial Nonuniform piecewise eigenstrain field Ellipsoidal domain 

Mathematics Subject Classification (2000)

74M25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A 241, 376–396 (1957) MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A 252, 561–569 (1959) MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Eshelby, J.D.: Elastic inclusions and inhomogeneities. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics 2, pp. 89–140. North-Holland, Amsterdam (1961) Google Scholar
  4. 4.
    Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Hague (1987) Google Scholar
  5. 5.
    Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49, 118–127 (1996) CrossRefGoogle Scholar
  6. 6.
    Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Solids. Elsevier, New York (1999) Google Scholar
  7. 7.
    Sendeckyj, G.P.: Ellipsoidal Inhomogeneity Problem. Ph.D. dissertation, Northwestern University, Evanston, IL (1967) Google Scholar
  8. 8.
    Rahman, M.: The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain. J. Appl. Mech. 69, 593–601 (2002) MATHCrossRefGoogle Scholar
  9. 9.
    Moschovidis, Z.A., Mura, T.: Two-ellipsoidal inhomogeneities by the equivalent inclusion method. J. Appl. Mech. 42, 847–852 (1975) MATHGoogle Scholar
  10. 10.
    Shodja, H.M., Sarvestani, A.S.: Elastic fields in double inhomogeneity by the equivalent inclusion method. J. Appl. Mech. 68, 3–10 (2001) MATHCrossRefGoogle Scholar
  11. 11.
    Shodja, H.M., Rad, I.Z., Soheilifard, R.: Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method. J. Mech. Phys. Solids 51, 945–960 (2003) MATHCrossRefADSGoogle Scholar
  12. 12.
    Shodja, H.M., Ojaghnezhad, F.A.: General unified treatment of lamellar inhomogeneities. Eng. Frac. Mech. 74, 1499–1510 (2007) CrossRefGoogle Scholar
  13. 13.
    Shodja, H.M., Shokrolahi-Zadeh, B.: Ellipsoidal domains: piecewise nonuniform and impotent eigenstrain fields. J. Elast. 86, 1–18 (2007) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Shokrolahi-Zadeh, B., Shodja, H.M.: Spectral equivalent inclusion method: anisotropic cylindrical multiinhomogeneities. J. Mech. Phys. Solids 56, 3565–3573 (2008) MATHCrossRefADSGoogle Scholar
  15. 15.
    Guell, D.L., Dunders, J.: Further results on centres of dilatation and residual stresses in joined elastic half spaces. In: Shaw, W.A. (ed.) Developments in Theoretical and Applied Mechanics, vol. 3, pp. 105–115. Pergamon, Oxford (1966) Google Scholar
  16. 16.
    Yu, H.Y., Sanday, S.C.: Elastic fields in joined half-space due to nuclei of strain. Proc. R. Soc. A 434, 503–519 (1991) MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Yu, H.Y., Sanday, S.C.: Elastic fields in joined semi-infinite solids with an inclusion. Proc. R. Soc. A 434, 520–529 (1991) ADSGoogle Scholar
  18. 18.
    Yu, H.Y., Sanday, S.C., Rath, B.B., Chang, C.I.: Elastic fields due to defects in transversely isotropic bimaterials. Proc. R. Soc. A 449, 1–30 (1994) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Yu, H.Y., Sanday, S.C., Rath, B.B.: Thermoelastic stresses in bimaterials. Philos. Mag. 65, 1049–1064 (1992) CrossRefADSGoogle Scholar
  20. 20.
    Wapole, L.J.: An elastic singularity in joined half-spaces. Int. J. Eng. Sci. 34, 629–638 (1996) CrossRefGoogle Scholar
  21. 21.
    Walpole, L.J.: An inclusion in one of two joined isotropic half-spaces. IMA J. Appl. Math. 59, 193–209 (1997) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rongved, L.: Force interior to one of two jointed semi-infinite solids. In: Proc. 2nd Midwestern Conf. Solid Mech., pp. 1–13 (1955) Google Scholar
  23. 23.
    Ferres, N.M.: On the potentials of ellipsoids, ellipsoidal shells, elliptic laminae and elliptic rings of variable densities. Q. J. Pure Appl. Math. 14, 1–22 (1877) Google Scholar
  24. 24.
    Dyson, F.W.: The potentials of ellipsoids with variable density. Q. J. Pure Appl. Math. XXV, 259–288 (1891) Google Scholar
  25. 25.
    Sharma, P., Sharma, R.: On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. J. Appl. Mech. 70, 418–425 (2003) MATHCrossRefGoogle Scholar
  26. 26.
    Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. In: Proceedings of First Midwestern Conference on Solid Mechanics, pp. 55–59 (1953) Google Scholar
  27. 27.
    Seo, K., Mura, T.: The elastic fields in a half-space due to an ellipsoidal inclusion with uniform dilatational eigenstrains. J. Appl. Mech. 46, 568–572 (1979) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • R. Avazmohammadi
    • 1
  • R. Hashemi
    • 1
  • H. M. Shodja
    • 2
    • 3
  • M. H. Kargarnovin
    • 1
  1. 1.Department of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of Civil EngineeringSharif University of TechnologyTehranIran
  3. 3.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran

Personalised recommendations