Skip to main content
Log in

Rigorous Bounds on the Torsional Rigidity of Composite Shafts with Imperfect Interfaces

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We derive upper and lower bounds for the torsional rigidity of cylindrical shafts with arbitrary cross-section containing a number of fibers with circular cross-section. Each fiber may have different constituent materials with different radius. At the interfaces between the fibers and the host matrix two kinds of imperfect interfaces are considered: one which models a thin interphase of low shear modulus and one which models a thin interphase of high shear modulus. Both types of interface will be characterized by an interface parameter which measures the stiffness of the interface. The exact expressions for the upper and lower bounds of the composite shaft depend on the constituent shear moduli, the absolute sizes and locations of the fibers, interface parameters, and the cross-sectional shape of the host shaft. Simplified expressions are also deduced for shafts with perfect bonding interfaces and for shafts with circular cross-section. The effects of the imperfect bonding are illustrated for a circular shaft containing a non-centered fiber. We find that when an additional constraint between the constituent properties of the phases is fulfilled for circular shafts, the upper and lower bounds will coincide. In the latter situation, the fibers are neutral inclusions under torsion and the bounds recover the previously known exact torsional rigidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  2. Polya, G.: Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Quart. Appl. Math. 6, 267–277 (1948)

    MATH  MathSciNet  Google Scholar 

  3. Polya, G., Weinstein, A.: On the torsional rigidity of multiply connected cross sections. Ann. Math. 52, 155–163 (1950)

    Article  MathSciNet  Google Scholar 

  4. Payne, L.E., Weinberger, H.F.: Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2, 210–216 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  5. Payne, L.E.: Some isoperimetric inequalities in the torsion problem for multiply connected regions. In: Studies in Mathematical Analysis and Related Topics. Essay in honor of G. Polya, Stanford University Press, CA (1962)

    Google Scholar 

  6. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  7. Chen, T., Benveniste, Y., Chuang, P.C.: Exact solutions in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages. Proc. R. Soc. A 458, 1719–1759 (2002)

    Article  MATH  ADS  Google Scholar 

  8. Chen, T.: An exactly solvable microgeometry in torsion: assemblage of multicoated cylinders. Proc. R. Soc. A 460, 1981–1993 (2004)

    Article  MATH  ADS  Google Scholar 

  9. Benveniste, Y., Miloh, T.: Soft neutral elastic inhomogeneities with membrane-type interface conditions. J. Elasticity 88, 87–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lipton, R.: Optimal fiber configurations for maximum torsional rigidity. Arch. Ration Mech. Anal. 144, 79–106 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lipton, R.: An Isoperimetric inequality for the torsional rigidity of imperfectly bonded fiber reinforced shafts. J. Elasticity 55, 1–10 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lipton, R., Chen, T.: Bounds and extremal configurations for the torsional rigidity of coated fiber reinforced shafts. SIAM J. Appl. Math. 65, 299–315 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, T., Lipton, R.: Bounds for the torsional rigidity of shafts with arbitrary cross-sections containing cylindrically orthotropic fibers or coated fibers. Proc. R. Soc. A. 463, 3291–3309 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bovik, P.: On the modelling of thin interface layers in elastic and acoustic scattering problems. Quart. J. Mech. Appl. Math. 47, 17–40 (1994)

    Article  MathSciNet  Google Scholar 

  15. Benveniste, Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54, 708–734 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Torquato, S., Rintoul, M.D.: Effect of the interface on the properties of composite media. Phys. Rev. Lett. 75, 4067–4070 (1995)

    Article  ADS  Google Scholar 

  17. Niklasson, A.J., Datta, S.K., Dunn, M.L.: On approximate guided wave in plates with thin anisotropic coatings by means of effective boundary conditions. J. Acoust. Soc. Am. 108(Pt 1), 924–933 (2000)

    Article  ADS  Google Scholar 

  18. Ting, T.C.T.: Mechanics of a thin anisotropic elastic layer and a layer that is bonded to an anisotropic elastic body or bodies. Proc. R. Soc. A. 463, 2223–2239 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Lipton, R., Vernescu, B.: Variational methods, size effects, and extremal microgeometries for elastic composites with imperfect interface. Math. Meth. Mod Appl. Sci. 5, 1139–1173 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lipton, R., Vernescu, B.: Composites with imperfect interface. Proc. R. Soc. A. 452, 329–358 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Benveniste, Y., Chen, T.: On the Saint-Venant torsion of composite bars with imperfect interfaces. Proc. R. Soc. A 457, 231–255 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Shenoy, V.B.: Size-dependent rigidities of nanosized torsional elements. Int. J. Solids Struct. 39, 4039–4052 (2002)

    Article  MATH  Google Scholar 

  24. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  25. Horgan, C.O., Knowles, J.K.: Recent developments concerning the Saint-Venant’s principle. In: Hutchinson, J.W. (ed.) Advances in Applied Mechanics, vol. 23, pp.170–269. Academic, New York (1983)

    Google Scholar 

  26. Chen, T., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nano-scaled solids. J. Appl. Phys. 100, 074308(1–5) (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tungyang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Chan, IT. Rigorous Bounds on the Torsional Rigidity of Composite Shafts with Imperfect Interfaces. J Elasticity 92, 91–108 (2008). https://doi.org/10.1007/s10659-007-9153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-007-9153-x

Keywords

Mathematics Subject Classifications (2000)

Navigation