Journal of Elasticity

, Volume 92, Issue 1, pp 109–113 | Cite as

Pure Shear – A Footnote

  • M. Hayes
  • T. J. Laffey


A result on pure shear provides the motivation for the determination of some new general results relating real second order Cartesian tensors.


Continuum mechanics Pure shear Combinations of tensors Orthogonal generators of cone 

Mathematics Subject Classifications (2000)

74A10 53A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belik, P., Fosdick, R.: The state of pure shear. J. Elast. 52, 91–98 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boulanger, P, Hayes, M.: On pure shear. J. Elast. 77, 83–89 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ting, T.C.T.: Further study on pure shear. J. Elast. 83, 75–104 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Norris, A.N.: Pure shear axes and elastic strain energy. Quart. J. Mech. Appl. Math. 59, 551–562 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boulanger, P., Hayes, M.: A note on pure shear. J. Elast. (in press)Google Scholar
  6. 6.
    Smith, C.: An Elementary Treatise on Solid Geometry. MacMillan, London (1884)MATHGoogle Scholar
  7. 7.
    Salmon, G.: A Treatise in the Analytic Geometry of Three Dimensions, 5th Ed. Hodges Figgis & Co Ltd, Dublin (1912)Google Scholar
  8. 8.
    Bell, R.J.T.: Elementary Treatise on Coordinate Geometry of Three Dimensions. MacMillan and Co, London (1912)MATHGoogle Scholar
  9. 9.
    McCrea, W.H.: Analytical Geometry of Three Dimensions. Oliver and Boyd, Edinburgh (1942)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity College DublinDublin 4Ireland

Personalised recommendations