Journal of Elasticity

, Volume 88, Issue 3, pp 299–309 | Cite as

The Kinematics of Plate Models: A Geometrical Deduction

  • Giuseppe Geymonat
  • Françoise Krasucki
  • Michele Serpilli


We present a deduction of the Kirchhoff–Love and Reissner–Mindlin kinematics of a simply-connected plate by using the formal asymptotic development method applied to the compatibility conditions of Saint-Venant and the formula of Cesàro–Volterra. This formal deduction is purely geometrical because we do not use any information coming from the loading or the constitutive behavior.


Compatibility conditions Cesàro–Volterra integral Asymptotic expansion Plate models 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amrouche, C., Ciarlet, P.G., Gratie, L., Kesavan, S.: On the characterizations of matrix fields as linearized strain tensor fields. J. Math. Pures Appl. 86, 116–132 (2006)MATHMathSciNetGoogle Scholar
  2. 2.
    Cesàro, E.: Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche. Rend. Napoli Serie, Anno XLV 7(3a), 311–321 (1906)Google Scholar
  3. 3.
    Ciarlet, P.G.: Mathematical Elasticity, vol. II: Theory of Plates, Studies in Mathematics and its Applications. North-Holland, Amsterdam (1997)Google Scholar
  4. 4.
    Ciarlet, P.G., Ciarlet, P. Jr.: Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models Methods Appl. Sci. 15, 259–271 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fosdick, R., Royer-Carfagni, G.: A Stokes theorem for second-order tensor fields and its implications in continuum mechanics. Int. J. Non-Linear Mech. 40, 381–386 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Geymonat, G., Krasucki, F.: Some remarks on the compatibilty conditions in elasticity. Rend. Accad. Naz. Sci. XL 123, 175–182 (2005)MathSciNetGoogle Scholar
  7. 7.
    Geymonat, G., Krasucki, F.: Beltrami’s solutions of general equilibrium equations in continuum mechanics. C. R. Acad. Sci. Paris Série I 342, 359–363 (2006)MATHMathSciNetGoogle Scholar
  8. 8.
    Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Encyclopedia of Physics, vol. VIa/2. Springer, Berlin Heidelberg New York (1972)Google Scholar
  9. 9.
    Miara B., Podio-Guidugli, P.: Deduction by scaling: a unified approach to classical plate and rod theories. Asymptot. Anal. 51, 113–131 (2007)MATHMathSciNetGoogle Scholar
  10. 10.
    Moreau, J.J.: Duality characterization of strain tensor distributions in arbitrary open set. J. Math. Anal. Appl. 72, 760–770 (1979)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Müller, S.: Paper presented at the course, classical and advanced theories of thin structures: mechanical and mathematical aspects. CISM, Udine, 5–9 June 2006Google Scholar
  12. 12.
    Paroni, R., Podio-Guidugli, P., Tomassetti, G.: A justification of the Reissner–Mindlin plate theory through variational convergence. Anal. Appl. 5, 165–182 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Podio-Guidugli, P.: An exact derivation of the thin plate equation. J. Elast. 22, 121-133 (1989)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ting, T.W.: St. Venant’s compatibility conditions. Tensor 28, 5–12 (1974)MATHMathSciNetGoogle Scholar
  15. 15.
    Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Ec. Norm. Super. 3ème Série 24, 401–517 (1907)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Giuseppe Geymonat
    • 1
  • Françoise Krasucki
    • 1
  • Michele Serpilli
    • 1
  1. 1.Laboratoire de Mécanique et Génie Civil, UMR 5508Université Montpellier IIMontpellier Cedex 5France

Personalised recommendations