Advertisement

Journal of Elasticity

, Volume 86, Issue 3, pp 245–261 | Cite as

Design of a Laminated Plate Possessing the Required Stiffnesses Using the Minimum Number of Materials and Layers

  • A. A. Kolpakov
Article

Abstract

This paper deals with the problem of the design of a laminated plate possessing the required set of stiffnesses under the condition of using the minimum number of layers and minimum number of materials. It is shown that the minimum number of layers is not more than four and the minimum number of materials is not more than two. We consider the case when three types of stiffness (bending, in-plane and out-of-plane) are prescribed and the case when two types of stiffness (physical bending and in-plane) are prescribed. It is proved that for both cases the sets of the possible values of physical stiffnesses are the same but the sets of designs can be different. A design algorithm is developed.

Key words

design laminated plate minimum number of layers minimum number of materials physical stiffnesses neutral plane 

Mathematics Subject Classifications (2000)

74B05 74K20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banichuk, N.V.: Introduction to Optimization of Structures. Springer, Berlin Heidelberg New York (1990)MATHGoogle Scholar
  2. 2.
    Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer, Berlin Heidelberg New York (1995)MATHGoogle Scholar
  3. 3.
    Gurdal, Z., Haftka, R.T., Hajela, P.: Design and Optimization of Laminated Composite Materials. Wiley, New York (1999)Google Scholar
  4. 4.
    Obraztsov, I.F., Vasil’ev, V.V., Bunakov, V.A.: Optimal Design of Shells of Revolution from Composite Materials. Mashinostroenie, Moscow, Russia (1977) [in Russian]Google Scholar
  5. 5.
    Reddy, J.N.: Mechanics of Laminated Composite Plates. CRC New York (1997)MATHGoogle Scholar
  6. 6.
    Lewinski, T., Telega, J.J.: Elastic plates and shells of minimal compliance. In: Gutkowski, G., Mroz, Z. (eds.) Second World Cong. Struct. Multidisciplinary Optimization. V.2. IFTR. Warsaw, Poland, pp. 841–846Google Scholar
  7. 7.
    Kalamkarov, A.L., Kolpakov, A.G.: Analysis, Design and Optimization of Composite Structures. Wiley, New York (1997)MATHGoogle Scholar
  8. 8.
    Kolpakov, A.A., Kolpakov, A.G.: Solution of the laminated plates design problem. New problems and algorithms. Comput. Struct. 83(12–13), 964–975 (2005)CrossRefGoogle Scholar
  9. 9.
    Schapery, R.A.: Composite materials. V.2. In: Sendeckyj, G.P. (ed.) Mechanics of Composite Materials. Academic, New York (1974)Google Scholar
  10. 10.
    Christensen, R.M.: Mechanics of Composite Materials. Krieger, Malabar, FL (1991)Google Scholar
  11. 11.
    Feller, W.: An Introduction to Probability Theory and its Applications, 3rd edn. Wiley, New York (1970)Google Scholar
  12. 12.
    Caillerie, D.: Thin elastic and periodic plates. Math. Methods Appl. Sci. 6, 159–191 (1984)MathSciNetGoogle Scholar
  13. 13.
    Andrianov, I.V., Awrejcewicz, J., Manevich, L.I. (eds.): Asymptotical Mechanics of Thin-Walled Structures. Springer, Berlin Heidelberg New York (2004)Google Scholar
  14. 14.
    Panasenko, G.P.: Multi-scale Modeling for Structures and Composite. Springer, Berlin Heidelberg New York (2005)Google Scholar
  15. 15.
    Kolpakov, A.G.: Stressed Composite Structures: Homogenized Models for Thin-walled Nonhomogeneous Structures with Initial Stresses. Springer, Berlin Heidelberg New York (2005)Google Scholar
  16. 16.
    Kaplunov, J.: Universal dynamic theory of shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Theories of Plates and Shells, pp. 77–84. Springer, Berlin Heidelberg New York (2004)Google Scholar
  17. 17.
    Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-posed Problems. Halsted, New York (1977)Google Scholar
  18. 18.
    Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1964)MATHGoogle Scholar
  19. 19.
    Liao, S.: Beyond Perturbation. Introduction to Homotopy Analysis Method. CRC, Boca Raton, FL (2004)MATHGoogle Scholar
  20. 20.
    Kuchling, H.: Physics. Leipzig, VEB Fachbuchverlag, Leipzig (1980)Google Scholar
  21. 21.
    Timoshenko, S., Voinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, NY (1959)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations