Skip to main content
Log in

Design of a Laminated Plate Possessing the Required Stiffnesses Using the Minimum Number of Materials and Layers

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper deals with the problem of the design of a laminated plate possessing the required set of stiffnesses under the condition of using the minimum number of layers and minimum number of materials. It is shown that the minimum number of layers is not more than four and the minimum number of materials is not more than two. We consider the case when three types of stiffness (bending, in-plane and out-of-plane) are prescribed and the case when two types of stiffness (physical bending and in-plane) are prescribed. It is proved that for both cases the sets of the possible values of physical stiffnesses are the same but the sets of designs can be different. A design algorithm is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banichuk, N.V.: Introduction to Optimization of Structures. Springer, Berlin Heidelberg New York (1990)

    MATH  Google Scholar 

  2. Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  3. Gurdal, Z., Haftka, R.T., Hajela, P.: Design and Optimization of Laminated Composite Materials. Wiley, New York (1999)

    Google Scholar 

  4. Obraztsov, I.F., Vasil’ev, V.V., Bunakov, V.A.: Optimal Design of Shells of Revolution from Composite Materials. Mashinostroenie, Moscow, Russia (1977) [in Russian]

    Google Scholar 

  5. Reddy, J.N.: Mechanics of Laminated Composite Plates. CRC New York (1997)

    MATH  Google Scholar 

  6. Lewinski, T., Telega, J.J.: Elastic plates and shells of minimal compliance. In: Gutkowski, G., Mroz, Z. (eds.) Second World Cong. Struct. Multidisciplinary Optimization. V.2. IFTR. Warsaw, Poland, pp. 841–846

  7. Kalamkarov, A.L., Kolpakov, A.G.: Analysis, Design and Optimization of Composite Structures. Wiley, New York (1997)

    MATH  Google Scholar 

  8. Kolpakov, A.A., Kolpakov, A.G.: Solution of the laminated plates design problem. New problems and algorithms. Comput. Struct. 83(12–13), 964–975 (2005)

    Article  Google Scholar 

  9. Schapery, R.A.: Composite materials. V.2. In: Sendeckyj, G.P. (ed.) Mechanics of Composite Materials. Academic, New York (1974)

    Google Scholar 

  10. Christensen, R.M.: Mechanics of Composite Materials. Krieger, Malabar, FL (1991)

    Google Scholar 

  11. Feller, W.: An Introduction to Probability Theory and its Applications, 3rd edn. Wiley, New York (1970)

    Google Scholar 

  12. Caillerie, D.: Thin elastic and periodic plates. Math. Methods Appl. Sci. 6, 159–191 (1984)

    MathSciNet  Google Scholar 

  13. Andrianov, I.V., Awrejcewicz, J., Manevich, L.I. (eds.): Asymptotical Mechanics of Thin-Walled Structures. Springer, Berlin Heidelberg New York (2004)

  14. Panasenko, G.P.: Multi-scale Modeling for Structures and Composite. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  15. Kolpakov, A.G.: Stressed Composite Structures: Homogenized Models for Thin-walled Nonhomogeneous Structures with Initial Stresses. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  16. Kaplunov, J.: Universal dynamic theory of shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Theories of Plates and Shells, pp. 77–84. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  17. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-posed Problems. Halsted, New York (1977)

    Google Scholar 

  18. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  19. Liao, S.: Beyond Perturbation. Introduction to Homotopy Analysis Method. CRC, Boca Raton, FL (2004)

    MATH  Google Scholar 

  20. Kuchling, H.: Physics. Leipzig, VEB Fachbuchverlag, Leipzig (1980)

    Google Scholar 

  21. Timoshenko, S., Voinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, NY (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kolpakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolpakov, A.A. Design of a Laminated Plate Possessing the Required Stiffnesses Using the Minimum Number of Materials and Layers. J Elasticity 86, 245–261 (2007). https://doi.org/10.1007/s10659-006-9092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9092-y

Key words

Mathematics Subject Classifications (2000)

Navigation