Skip to main content
Log in

Discrete Homogenization in Graphene Sheet Modeling

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Graphene sheets can be considered as lattices consisting of atoms and of interatomic bonds. Their bond lengths are smaller than one nanometer. Simple models describe their behavior by an energy that takes into account both the interatomic lengths and the angles between bonds. We make use of their periodic structure and we construct an equivalent macroscopic model by means of a discrete homogenization technique. Large three-dimensional deformations of graphene sheets are thus governed by a membrane model whose constitutive law is implicit. By linearizing around a prestressed configuration, we obtain linear membrane models that are valid for small displacements and whose constitutive laws are explicit. When restricting to two-dimensional deformations, we can linearize around a rest configuration and we provide explicit macroscopical mechanical constants expressed in terms of the interatomic tension and bending stiffnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.L. Allinger, Y.H. Yuh and J.H. Lii, Molecular mechanics. The MM3 force field for hydrocarbons. J. Am. Chem. Soc. 111 (1989) 8551–8566.

    Article  Google Scholar 

  2. S.S. Antman, Nonlinear Problems of Elasticity. Springer, Berlin Heidelberg New York (1995).

    MATH  Google Scholar 

  3. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Stuctures. North-Holland, Amsterdam (1978).

    Google Scholar 

  4. X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164 (2002) 341–381.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Braides and M.S. Gelli, The passage from discrete to continuous variational problems: A nonlinear homogenization process. In: P. Ponte Castaneda (ed.), Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials. Kluwer (2004) pp. 45–63.

  6. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev., B 42 (1990) 9458–9471.

    Article  ADS  Google Scholar 

  7. D. Caillerie, A. Mourad and A. Raoult, Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. M2AN Modél. Math. Anal. Numér. 37 (2003) 681–698.

    Article  MATH  MathSciNet  Google Scholar 

  8. C.F. Cornwell and L.T. Wille, Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun. 101 (1997) 555–558.

    Article  ADS  Google Scholar 

  9. D. Coutand, Théorèmes d'existence pour un modèle membranaire proprement invariant de plaque non linéairement élastique. C. R. Acad. Sci., Sér. 1 Paris 324 (1997) 1181–1184.

    MATH  MathSciNet  Google Scholar 

  10. D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124 (1993) 157–199.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.E. Gurtin, An Introduction to Continuum Mechanics. Academic, New York (1981).

    MATH  Google Scholar 

  12. A. Krishnan, E. Dujardin, E. Ebbesen, P.N. Yianilos and M.M.J. Treacy, Young's modulus of single-walled nanotubes. Phys. Rev., B 58 (1998) 14013–14019.

    Article  ADS  Google Scholar 

  13. T. Lenosky, X. Gonze, M. Teter and V. Elser, Energetics of negatively curved graphitic carbon. Nature 355 (1992) 333–335.

    Article  ADS  Google Scholar 

  14. J.Z. Liu, Q. Zheng and Q. Jiang, Effect of a rippling mode on resonances of carbon nanotubes. Phys. Rev. Lett. 86 (2001) 4843–4846.

    Article  PubMed  ADS  Google Scholar 

  15. C.-S. Man and D.E. Carlson, On the traction problem of dead loading in linear elasticity with initial stress. Arch. Ration. Mech. Anal. 128 (1994) 223–247.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Mourad, Description topologique de l'architecture fibreuse et modélisation mécanique du myocarde. Doctoral Dissertation, Institut National Polytechnique de Grenoble, Grenoble, France (2003).

  17. G. Odegard, T.S. Gates, L. Nicholson and C. Wise, Equivalent continuum modeling of nanostructured materials. NASA Technical Report, NASA TM-2001–210863 (2001).

  18. D.H. Robertson, D.W. Brenner and J.W. Mintmire, Energetics of nanoscale graphitic tubules. Phys. Rev., B 45 (1992) 12592–12595.

    Article  ADS  Google Scholar 

  19. E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory. Monographs in Physics, 127, Springer, Berlin Heidelberg New York (1980).

    Google Scholar 

  20. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev., B 37 (1988) 6991–7000.

    Article  ADS  Google Scholar 

  21. H. Tollenaere and D. Caillerie, Continuous modeling of lattice structures by homogenization. Adv. Eng. Softw. 29 (1998) 699–705.

    Article  Google Scholar 

  22. M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381 (1996) 678–680.

    Article  ADS  Google Scholar 

  23. Z. Tu and Z. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number. Phys. Rev., B 65 (2002) 233407–233410.

    Article  ADS  Google Scholar 

  24. E.W. Wong, P.E. Sheehan and C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277 (1997) 1971–1975.

    Article  Google Scholar 

  25. B.I. Yakobson, C.J. Brabec and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76 (1996) 2511–2514.

    Article  PubMed  ADS  Google Scholar 

  26. M.F. Yu, B.S. Files, S. Arepalli and R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84 (2000) 5552–5555.

    Article  PubMed  ADS  Google Scholar 

  27. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287 (2000) 637–640.

    Article  PubMed  ADS  Google Scholar 

  28. X. Zhou, J. Zhou and Z. Ou-Yang, Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev., B 62 (2000) 13692–13696.

    Article  ADS  Google Scholar 

  29. G. Zhou, W. Duan and B. Gu, First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem. Phys. Lett. 333 (2001) 344–349.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Mourad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillerie, D., Mourad, A. & Raoult, A. Discrete Homogenization in Graphene Sheet Modeling. J Elasticity 84, 33–68 (2006). https://doi.org/10.1007/s10659-006-9053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9053-5

Mathematics Subject Classifications (2000)

Key words

Navigation