Journal of Elasticity

, Volume 84, Issue 1, pp 33–68 | Cite as

Discrete Homogenization in Graphene Sheet Modeling

  • Denis Caillerie
  • Ayman Mourad
  • Annie Raoult


Graphene sheets can be considered as lattices consisting of atoms and of interatomic bonds. Their bond lengths are smaller than one nanometer. Simple models describe their behavior by an energy that takes into account both the interatomic lengths and the angles between bonds. We make use of their periodic structure and we construct an equivalent macroscopic model by means of a discrete homogenization technique. Large three-dimensional deformations of graphene sheets are thus governed by a membrane model whose constitutive law is implicit. By linearizing around a prestressed configuration, we obtain linear membrane models that are valid for small displacements and whose constitutive laws are explicit. When restricting to two-dimensional deformations, we can linearize around a rest configuration and we provide explicit macroscopical mechanical constants expressed in terms of the interatomic tension and bending stiffnesses.

Mathematics Subject Classifications (2000)

70G75 74B15 74B20 74K15 74Q15 

Key words

lattices homogenization molecular mechanics nonlinear elasticity constitutive laws graphene sheets carbon nanotubes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.L. Allinger, Y.H. Yuh and J.H. Lii, Molecular mechanics. The MM3 force field for hydrocarbons. J. Am. Chem. Soc. 111 (1989) 8551–8566.CrossRefGoogle Scholar
  2. 2.
    S.S. Antman, Nonlinear Problems of Elasticity. Springer, Berlin Heidelberg New York (1995).MATHGoogle Scholar
  3. 3.
    A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Stuctures. North-Holland, Amsterdam (1978).Google Scholar
  4. 4.
    X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164 (2002) 341–381.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    A. Braides and M.S. Gelli, The passage from discrete to continuous variational problems: A nonlinear homogenization process. In: P. Ponte Castaneda (ed.), Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials. Kluwer (2004) pp. 45–63.Google Scholar
  6. 6.
    D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev., B 42 (1990) 9458–9471.CrossRefADSGoogle Scholar
  7. 7.
    D. Caillerie, A. Mourad and A. Raoult, Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. M2AN Modél. Math. Anal. Numér. 37 (2003) 681–698.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    C.F. Cornwell and L.T. Wille, Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun. 101 (1997) 555–558.CrossRefADSGoogle Scholar
  9. 9.
    D. Coutand, Théorèmes d'existence pour un modèle membranaire proprement invariant de plaque non linéairement élastique. C. R. Acad. Sci., Sér. 1 Paris 324 (1997) 1181–1184.MATHMathSciNetGoogle Scholar
  10. 10.
    D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124 (1993) 157–199.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    M.E. Gurtin, An Introduction to Continuum Mechanics. Academic, New York (1981).MATHGoogle Scholar
  12. 12.
    A. Krishnan, E. Dujardin, E. Ebbesen, P.N. Yianilos and M.M.J. Treacy, Young's modulus of single-walled nanotubes. Phys. Rev., B 58 (1998) 14013–14019.CrossRefADSGoogle Scholar
  13. 13.
    T. Lenosky, X. Gonze, M. Teter and V. Elser, Energetics of negatively curved graphitic carbon. Nature 355 (1992) 333–335.CrossRefADSGoogle Scholar
  14. 14.
    J.Z. Liu, Q. Zheng and Q. Jiang, Effect of a rippling mode on resonances of carbon nanotubes. Phys. Rev. Lett. 86 (2001) 4843–4846.CrossRefPubMedADSGoogle Scholar
  15. 15.
    C.-S. Man and D.E. Carlson, On the traction problem of dead loading in linear elasticity with initial stress. Arch. Ration. Mech. Anal. 128 (1994) 223–247.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    A. Mourad, Description topologique de l'architecture fibreuse et modélisation mécanique du myocarde. Doctoral Dissertation, Institut National Polytechnique de Grenoble, Grenoble, France (2003).Google Scholar
  17. 17.
    G. Odegard, T.S. Gates, L. Nicholson and C. Wise, Equivalent continuum modeling of nanostructured materials. NASA Technical Report, NASA TM-2001–210863 (2001).Google Scholar
  18. 18.
    D.H. Robertson, D.W. Brenner and J.W. Mintmire, Energetics of nanoscale graphitic tubules. Phys. Rev., B 45 (1992) 12592–12595.CrossRefADSGoogle Scholar
  19. 19.
    E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory. Monographs in Physics, 127, Springer, Berlin Heidelberg New York (1980).Google Scholar
  20. 20.
    J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev., B 37 (1988) 6991–7000.CrossRefADSGoogle Scholar
  21. 21.
    H. Tollenaere and D. Caillerie, Continuous modeling of lattice structures by homogenization. Adv. Eng. Softw. 29 (1998) 699–705.CrossRefGoogle Scholar
  22. 22.
    M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381 (1996) 678–680.CrossRefADSGoogle Scholar
  23. 23.
    Z. Tu and Z. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number. Phys. Rev., B 65 (2002) 233407–233410.CrossRefADSGoogle Scholar
  24. 24.
    E.W. Wong, P.E. Sheehan and C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277 (1997) 1971–1975.CrossRefGoogle Scholar
  25. 25.
    B.I. Yakobson, C.J. Brabec and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76 (1996) 2511–2514.CrossRefPubMedADSGoogle Scholar
  26. 26.
    M.F. Yu, B.S. Files, S. Arepalli and R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84 (2000) 5552–5555.CrossRefPubMedADSGoogle Scholar
  27. 27.
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287 (2000) 637–640.CrossRefPubMedADSGoogle Scholar
  28. 28.
    X. Zhou, J. Zhou and Z. Ou-Yang, Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev., B 62 (2000) 13692–13696.CrossRefADSGoogle Scholar
  29. 29.
    G. Zhou, W. Duan and B. Gu, First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem. Phys. Lett. 333 (2001) 344–349.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratoire Sols, Solides, StructuresGrenoble Cedex 9France
  2. 2.L3S and LMCGrenobleFrance
  3. 3.Laboratoire de Modélisation et CalculGrenoble Cedex 9France
  4. 4.Bioengineering InstituteAucklandNew Zealand

Personalised recommendations