Journal of Elasticity

, Volume 75, Issue 2, pp 167–186 | Cite as

Examples of concentrated contact interactions in simple bodies

  • P. Podio-Guidugli


The phenomenology of concentrated contact interactions, a rare but at times necessary occurrence to guarantee partwise equilibrium, is illustrated by means of examples taken from two-dimensional equilibrium problems where concentrated loads are applied to infinite bodies occupying either a half plane or the whole plane. Although the corresponding three-dimensional problems in linearly isotropic elasticity have been solved since long past, this phenomenology has remained latent so far.

Key words

contact interactions concentrated loads stress singularities 

Mathematics Subject Classifications (2000)

74A10 74A50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Adams, Sobolev Spaces. Academic Press, New York (1975).Google Scholar
  2. 2.
    L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Univ. Press, Oxford (2000).Google Scholar
  3. 3.
    J.R. Barber, Elasticity, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002).Google Scholar
  4. 4.
    E. Benvenuto, La Scienza delle Costruzioni e il suo Sviluppo Storico. Sansoni (1981).Google Scholar
  5. 5.
    J. Boussinesq, Équilibre d’élasticité d’un sol isotrope sans pesanteur, supportant différents poids. C. R. Acad. Sci. Paris 86 (1878) 1260–1263.Google Scholar
  6. 6.
    J. Boussinesq, Application des Potentiels à l’Étude de l’Équilibre et du Mouvement des Solides Élastiques. Gauthiers-Villars, Paris (1885).Google Scholar
  7. 7.
    J. Boussinesq, Équilibre d’élasticité d’un solide sans pesanteur, homogène et isotrope, dont les parties profondes sont maintenues fixes, pendant que sa surface éprouve des pressions ou des déplacements connus, s’annullant hors d’une région restreinte oú ils sont arbitraires. C. R. Acad. Sci. Paris 106 (1888) 1043–1048, 1119–1123.Google Scholar
  8. 8.
    J. Boussinesq, Des perturbations locales que produit au-dessous delle une forte charge, répartie uniformément le long d’une droite normale aux deux bords, à la surface supérieure d’une poutre rectangulaire et de longueur indéfinie posée de champ soit sur un sol horizontal, soit sur deux appuis transversaux équidistants de la charge. C. R. Acad. Sci. Paris 114 (1892) 1510–1516.Google Scholar
  9. 9.
    G. Capriz and P. Podio-Guidugli, Whence the boundary conditions in modern continuum physics? In: G. Capriz and P. Podio-Guidugli (eds), Proceedings of the Symposium, Rome, Accademia dei Lincei, October 2002, (2004) to appear.Google Scholar
  10. 10.
    S. Carillo, P. Podio-Guidugli and G. Vergara Caffarelli, Second-order surface potentials in finite elasticity. In: M. Brocato and P. Podio-Guidugli (eds), Rational Continua, Classical and New. Springer, Berlin (2002) pp. 19–38.Google Scholar
  11. 11.
    A.-L. Cauchy, Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philom. (1823) 9–13.Google Scholar
  12. 12.
    V. Cerruti, Ricerche intorno all’equilibrio de’ corpi elastici isotropi. Rend. Accad. Lincei 3(13) (1882) 81–122.Google Scholar
  13. 13.
    A. DiCarlo, Actual surfaces versus virtual cuts. In: G. Capriz and P. Podio-Guidugli (eds), Proceedings of the Symposium “Whence the Boundary Conditions in Modern Continuum Physics?”, Rome, Accademia dei Lincei, October 2002 (2004) to appear.Google Scholar
  14. 14.
    A. Flamant, Sur la répartition des pressions dans un solide rectangulaire chargé transversalement. C. R. Acad. Sci. Paris 114 (1892) 1465–1468.Google Scholar
  15. 15.
    D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin (1983).Google Scholar
  16. 16.
    M.E. Gurtin, The Linear Theory of Elasticity. In: S. Flügge (ed.), Handbuch der Physik, Vol. VIa/2. Springer-Verlag, Berlin (1972).Google Scholar
  17. 17.
    J. Harrison, Ravello Lectures in Geometric Calculus (2004) forthcoming.Google Scholar
  18. 18.
    A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1927).Google Scholar
  19. 19.
    L.E. Malvern, Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, NJ (1969).Google Scholar
  20. 20.
    A. Marzocchi and A. Musesti, Balance laws and weak boundary conditions in continuum mechanics. J. Elasticity (2004) to appear.Google Scholar
  21. 21.
    J.L. Meriam and L.G. Kraige, Engineering Mechanics, Vol. 1, 5th edn. Wiley, New York (2003).Google Scholar
  22. 22.
    M. Šilhavý, Divergence measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Univ. Padova (2004) to appear.Google Scholar
  23. 23.
    M. Šilhavý, Geometric Integration Theory and Cauchy’s Stress Theorem. Unpublished Lecture Notes (March–September 2004).Google Scholar
  24. 24.
    I.S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd edn. Tata) McGraw-Hill, New York (1956).Google Scholar
  25. 25.
    W. Thompson (Lord Kelvin), Note on the integration of the equations of equilibrium of an elastic solid. Cambr. Dubl. Math. J. 3 (1848) 87–89.Google Scholar
  26. 26.
    C. Truesdell, A First Course in Rational Continuum Mechanics, Vol. 1, 2nd edn. Academic Press, New York (1991).Google Scholar
  27. 27.
    C. Truesdell and R.A. Toupin, The Classical Field Theories, S. Flügge (ed.), Handbuch der Physik, Vol. III/1. Springer-Verlag, Berlin (1960).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P. Podio-Guidugli
    • 1
  1. 1.Dipartimento di Ingegneria CivileUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations