Epicoccum species: ubiquitous plant pathogens and effective biological control agents

Abstract

Epicoccum species are ubiquitous ascomycetes. Several species are known to cause plant diseases and some species act as biological control agents against a range of plant pathogens. Accurate identification of Epicoccum species is paramount to a successful disease management program and successful development of biological control products. There are 18 Epicoccum species that are associated with diseases of 46 plant species. The diseases occur in 20 countries with leaf spot as the most commonly reported disease symptom. There are a further five Epicoccum species (E. nigrum, E. layuense, E. dendrobii, E, mezzettii and E. minitans) that have biological control activity against various plant pathogens. Of the five species, Epicoccum nigrum is the most promising and has been shown to reduce incidence and severity of a wide range of plant diseases. The use of bioactive metabolites (e.g. flavipin and epicolactone) from Epicoccum spp. may offer growers a cheap and safe alternative to conventional pesticides which are widely used to manage plant diseases. We review the current knowledge of Epicoccum species, both those species that are plant pathogens, and those species that are biological control agents for plant disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abass, M. H. (2016). Identification of different fungal fruit rot pathogens of date palm (Phoenix dactylifera L.) using ITS and RAPD markers. Basra Journal for Date Palm Researches, 15, 1–19.

    Google Scholar 

  2. Alcock, A., Elmer, P., Marsden, R., & Parry, F. (2015). Inhibition of Botrytis cinerea by epirodin: A secondary metabolite from New Zealand isolates of Epicoccum nigrum. Journal of Phytopathology, 163, 841–852.

    CAS  Article  Google Scholar 

  3. Andersen, G. L., Frisch, A. S., Kellogg, C. A., Levetin, E., Lighthart, B., & Paterno, D. (2009). Aeromicrobiology/air quality. In Encyclopedia of microbiology, 3rd edition. Academic: Press.

    Google Scholar 

  4. Araujo, F. D., Favaro, L. C., Araujo, W. L., De Oliveira, F. L., Aparicio, R., Marsaioli, A. J. (2012). Epicolactone – Natural product isolated from the sugarcane endophytic fungus Epicoccum nigrum. European Journal of Organic Chemistry, 5225-5230.

  5. Arenal, F., Platas, G., Martin, J., Salazar, O., & Peláez, F. (1999). Evaluation of different PCR-based DNA fingerprinting techniques for assessing the genetic variability of isolates of the fungus Epicoccum nigrum. Journal of Applied Microbiology, 87(6), 898–906.

  6. Aveskamp, M. M., De Gruyter, J., Woudenberg, J. H. C., Verkley, G. J. M., & Crous, P. W. (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology, 65, 1–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Bagy, H. M. K., Hassan, E. A., Nafady, N. A., & Dawood, M. F. (2019). Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biological Control, 134, 103–113.

    Article  Google Scholar 

  8. Balendres, M. A., & Bengoa, J. C. (2019). Diseases of dragon fruit (Hylocereus species): Etiology and current management options. Crop Protection, 126, 104920.

    CAS  Article  Google Scholar 

  9. Bamford, P., Norris, G. L. F., & Ward, G. (1961). Flavipin production by Epicoccum spp. Transactions of the British Mycological Society, 44, 354–356.

    CAS  Article  Google Scholar 

  10. Bao, X. T., Dharmasena, D. S. P., Li, D. X., Wang, X., Jiang, S. L., Ren, Y. F., Wang, D. L., Song, B. A., & Chen, Z. (2019). First report of Epicoccum sorghinum causing leaf spot on tea in China. Plant Disease, 10, 3282.

    Article  Google Scholar 

  11. Baute, M. A., Deffieux, G., Baute, R., & Neveu, A. (1978). New antibiotics from the fungus Epicoccum nigrum. The Journal of Antibiotics, 31, 1099–1101.

    CAS  PubMed  Article  Google Scholar 

  12. Beasley, D. R., Joyce, D. C., Coates, L. M., & Wearing, A. H. (2001). Saprophytic microorganisms with potential for biological control of Botrytis cinerea on Geraldton waxflower flowers. Australian Journal of Experimental Agriculture, 41, 693–703.

    Article  Google Scholar 

  13. Bhuiyan, S. A., Ryley, M. J., Galea, V. J., & Tay, D. (2003). Evaluation of potential biocontrol agents against Claviceps africana in vitro and in vivo. Plant Pathology, 52, 60–67.

    Article  Google Scholar 

  14. Bian, J. Y., Fang, Y. L., Song, Q., Sun, M. L., Yang, J. Y., Ju, Y. W., Li, D. W., & Huang, L. (2020). The fungal endophyte Epicoccum dendrobii as a potential biocontrol agent against Colletotrichum gloeosporioides. Phytopathology. https://doi.org/10.1094/PHYTO-05-20-0170-R.

  15. Braga, R. M., Padilla, G., & Araújo, W. L. (2018). The biotechnological potential of Epicoccum spp.: Diversity of secondary metabolites. Critical Reviews in Microbiology, 44, 759–778.

    CAS  PubMed  Article  Google Scholar 

  16. Brown, A. E., Finlay, R., & Ward, J. S. (1987). Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biology and Biochemistry., 19, 657–664.

    CAS  Article  Google Scholar 

  17. Bruton, B. D., Redlin, S. C., Collins, J. K., & Sams, C. E. (1993). Postharvest decay of cantaloupe caused by Epicoccum nigrum. Plant Disease, 77, 1060–1062.

    Article  Google Scholar 

  18. Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237–246.

    Article  Google Scholar 

  19. Chen, Q., Jiang, J. R., Zhang, G. Z., Cai., L., Crous, P. W. (2015). Resolving the Phoma enigma. Studies in Mycology, 82, 137–217.

  20. Chen, Q., Hou, L. W., Duan, W. J., Crous, P. W., & Cai, L. (2017a). Didymellaceae revisited. Studies in Mycology, 87, 105–159.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Chen, X. L., Wang, Y. H., & Luo, T. (2017b). First report of leaf spot caused by Phoma sorghina on Oxalis debilis in China. Plant Disease, 101, 1047.

    Article  Google Scholar 

  22. Chen, H., Li, C. J., & White, J. F. (2019). First report of Epicoccum layuense causing brown leaf spot on oat (Avena sativa) in northwestern China. Plant Disease, 104, 990.

    Article  Google Scholar 

  23. Chen, Y. J., Wan, Y. H., Zou, L. J., & Tong, H. R. (2020). First report of leaf spot disease caused by Epicoccum layuense on Camellia sinensis in Chongqing, China. Plant Disease, 104, 7.

    Google Scholar 

  24. Chethana, K. W. T., Jayawardene, R. S., Zhang, W., Zhou, Y. Y., Liu, M., Hyde, K. D., Li, X. H., Wang, J., Zhang, K. C., & Yan, J. Y. (2019). Molecular characterization and pathogenicity of fungal taxa associated with cherry leaf spot disease. Mycosphere, 10, 490–530.

    Article  Google Scholar 

  25. Colavolpe, B., Ezquiaga, J., Maiale, S., & Ruiz, O. (2018). First report of Epicoccum nigrum causing disease in Lotus corniculatus in Argentina. New Disease Reports, 38, 6.

    Article  Google Scholar 

  26. Das, S. N., & Chaudhary, S. (1985). A new leaf spot disease of maize caused by Epicoccum purpurascens in West Bengal. Science and Culture, 51, 306–307.

    Google Scholar 

  27. De Cal, A., Larena, I., Lin, M., Torres, R., Lamarca, N., Usuall, J., Domenichini, P., Bellini, A., de Eribe, X. O., & Melgarejo, P. (2008). Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. Journal of Applied Microbiology, 106, 592–605.

    Article  Google Scholar 

  28. de Gruyter, J., Aveskamp, M. M., Woudenberg, J. H. C., Verkley, G. J. M., Groenewald, J. Z., & Crous, P. W. (2009). Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phomacomplex. Mycological Research, 113, 508–519.

  29. Del Frari, G., Cabral, A., Nascimento, T., Boavida Ferreira, R., & Oliveira, H. (2019). Epicoccum layuense a potential biological control agent of esca-associated fungi in grapevine. PLoS One, 14, e0213273.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Derbalah, A. S., El Kot, G. A., & Hamza, A. M. (2011). Control of powdery mildew in okra using cultural filtrates of certain bio-agents alone and mixed with penconazole. Archives of Phytopathology and Plant Protection, 44, 2012–2023.

    CAS  Article  Google Scholar 

  31. Domsch, K. H. & Gams, W. (1993) Compendium of Soil Fungi, vol. 1, Eching: Germany: IHW-Verlag.

  32. El-Gremi, S. M., Draz, I. S., & Youssef, W. A. E. (2017). Biological control of pathogens associated with kernel black point disease of wheat. Crop Protection, 91, 13–19.

  33. Elgorban, A. M., Bahkali, A. H., & Al-Sum, B. A. (2013). Biological control of root rots and stems canker of tomato plants caused by Rhizoctonia solani in Saudi Arabia. Journal of Pure and Applied Microbiology, 7, 819–826.

    Google Scholar 

  34. Elkhateeb, W. A., & Daba, G. M. (2019). Epicoccum species as potent factories for the production of compounds of industrial, medical, and biological control applications. Biomedical Journal of Scientific and Technical Research, 14, 10616–10620.

    Google Scholar 

  35. Favaro, L. C., de Melo, F. L., Aguilar-Vildoso, C. I., & Araujo, W. L. (2011). Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One, 6, e14828.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Favaro, L. C., Sebastianes, F. L., & Araujo, W. L. (2012). Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One, 7, e36826.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Fowler, S. R., Jaspers, M. V., Walter, M., & Stewart, A. (1999). Suppression of overwintering Botrytis Cinerea inoculum on grape rachii using antagonistic fungi. Plant Protection Conf, 1999, 141–147.

    Google Scholar 

  38. Fu, R., Chen, C., Wang, J., & Gong, X. (2019). First report of Epicoccum sorghinum causing leaf spot on Paris polyphylla in China. Plant Disease, 103, 1426.

    Article  Google Scholar 

  39. Gasparetto, B. F., Franke, L. B., Andrade, C. C., Dalbosco, M., Duarte, V., Moreira, S. I., & Alves, E. (2017). First report of Bipolaris micropus, Curvularia geniculata, Epicoccum sorghinum, and Fusarium incarnatum on Paspalum guenoarum seeds in Rio Grande do Sul, Brazil. Plant Disease, 101, 1679.

    Article  Google Scholar 

  40. Guerra-Guimarães, L., Azinheira, H.G., Martins, A.C., Silva, M.C., Gichuru, E.K., Victor, V., Benoît, B. (2007). Antagonistic interaction between Epicoccum nigrum and Colletotrichum kahawae, the causal agent of coffee berry disease. In : 21st International Conference on Coffee Science, Montpellier (France), ASIC, pp. 1284–1290.

  41. Gupta, P. C., & Karwasra, S. S. (1982). Epicoccum leaf spot- a new disease of berseem (Trifolium alexandrinum). Indian Phytopathology, 35, 538–539.

    Google Scholar 

  42. Hashem, M. (2004). Biological control of two phytopathogenic fungal species isolated from the rhizoplane of soybean (Glycine max). Czech Mycology, 56, 223–238.

    Article  Google Scholar 

  43. Hashem, M., & Ali, E. (2004). Epicoccum nigrum as biocontrol agent of Pythium damping-off and root-rot of cotton seedlings. Archives of Phytopathology and Plant Protection, 37, 283–297.

    Article  Google Scholar 

  44. Hegazi, M. A., & El-Kot, G. A. (2010). Biological control of powdery mildew on zinnia (Zinnia elegans, L) using some biocontrol agents and plant extracts. Journal of Agricultural Science, 2, 221.

    Google Scholar 

  45. Hopkins, J. C. F. (1932). Some diseases of cotton in southern Rhodesia. Emp Cotto Gr. Rev. 9, no. 2, 109-1 IS.

  46. Hoyte, S. M., Elmer, P. A. G., Parry, F. J., Taylor, J. T., & Marsden, R. S. (2006, February). Biological suppression of Sclerotinia sclerotiorum in kiwifruit. In VI International Symposium on Kiwifruit 753 (pp. 661-668).

  47. Huang, H. C., Bremer, E., Hynes, R. K., & Erickson, R. S. (2000). Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biological Control, 18, 270–276.

    Article  Google Scholar 

  48. Jayasiri, S. C., Hyde, K. D., Jones, E. B. G., Jeewon, R., Ariyawansa, H. A., Bhat, J. D., ... & Kang, J. C. (2017). Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere, 8(8), 1080–1101.

  49. Jensen, B. D., Knorr, K., & Nicolaisen, M. (2016). In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains. European Journal of Plant Pathology, 146, 657–670.

    CAS  Article  Google Scholar 

  50. Kang, Y., Zhang, J. X., Wan, Q., Xu, T. T., Li, C. X., & Cao, H. Q. (2019). First report of leaf brown spot caused by Epicoccum sorghinum on Digitaria sanguinalis in China. Plant Disease, 103, 1787.

    Article  Google Scholar 

  51. Kawamata, H., Narisawa, K., & Hashiba, T. (2004). Suppression of rice blast by phylloplane fungi isolated from rice plants. Journal of General Plant Pathology, 70, 131–138.

    Article  Google Scholar 

  52. Kodama, F., & Tsuchiya, S. (1981). Brown blotch on glume of rice plant caused by Epicoccum purpurascens Ehrenberg ex Schlechtendahl. Annual-Report-of-the-Society-of-Plant-Protection-of-North-Japan (Japan), 32, 107–109.

    Google Scholar 

  53. Kortekamp, A. (1997). EpicoccumnigrumLINK: A biological control agent of Plasmopara viticola (Berk. et Curt.) Berl. et De Toni. Vitis, 36, 215–216.

    Google Scholar 

  54. Kosawang, C., Amby, D. B., Bussaban, B., McKinney, L. V., Xu, J., Kjær, E. D., Collinge, D. B., & Nielsen, L. R. (2018). Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biology, 122, 110–120.

    PubMed  Article  Google Scholar 

  55. Koutb, M., & Ali, E. H. (2010). Potential of Epicoccum purpurascens strain 5615 AUMC as a biocontrol agent of Pythium irregulare root rot in three leguminous plants. Mycobiology, 38, 286–294.

    PubMed  PubMed Central  Article  Google Scholar 

  56. Lahlali, R., & Hijri, M. (2010). Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiology Letters, 311, 152–159.

    CAS  PubMed  Article  Google Scholar 

  57. Larena, I., Liñan, M., & Melgarejo, P. (2002). Antibiotic production of the biocontrol agentsEpicoccum nigrum and Candida sake. Plant Protection Science, 38, 205–208.

    Article  Google Scholar 

  58. Larena, I., De Cal, A., & Melgarejo, P. (2004). Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. International Journal of Food Microbiology, 94, 161–167.

    CAS  PubMed  Article  Google Scholar 

  59. Larena, I., Torres, R., De Cal, A., Liñán, M., Melgarejo, P., Domenichini, P., Bellini, A., Mandrin, J. F., Lichou, J., de Eribe, X. O., & Usuall, J. (2005). Biological control of postharvest brown rot (Monilinia spp.) of peaches by Weld applications of Epicoccum nigrum. Biological Control, 32, 305–310.

    Article  Google Scholar 

  60. Li, Y., Xia, L. Q., Wang, Y. N., Liu, X. Y., Zhang, C. H., Hu, T. L., & Cao, K. Q. (2013). The inhibitory effect of Epicoccum nigrum strain XF1 against Phytophthora infestans. Biological Control, 67, 462–468.

    Article  Google Scholar 

  61. Lin, Z. Y., Wei, J. J., Zhang, M. Q., Xu, S. Q., Guo, Q., Wang, X., Wang, J. H., Chen, B. S., Que, Y. X., Deng, Z. H., Chen, R. K., & Powell, C. A. (2015). Identification and characterization of a new fungal pathogen causing twisted leaf disease of sugarcane in China. Plant Disease, 99, 325–332.

    CAS  PubMed  Article  Google Scholar 

  62. Lin, S., Taylor, N. J., & Hand, F. P. (2018). Identification and characterization of fungal pathogens causing fruit rot of deciduous Holly. Plant Disease, 102, 2430–2445.

    CAS  PubMed  Article  Google Scholar 

  63. Liu, X., Hu, T., & Cao, K. (2007). Biological characteristics of strain F603 of Epicoccom sp., an antagonistic fungus for controlling Phytophthora infestans. Front. Agric. China, 1, 175–178.

    Article  Google Scholar 

  64. Liu, P. Q., Wei, M. Y., Zhu, L., Wang, R. B., Li, B. J., Weng, Q. Y., & Chen, Q. H. (2017). First report of leaf spot on taro caused by Epicoccum sorghinum in China. Plant Disease, 102, 682.

    Article  Google Scholar 

  65. Liu, P. Q., Wei, M. Y., Zhu, L., Wang, R. B., Li, B. J., Weng, Q. Y., & Chen, Q. H. (2018). First report of leaf spot on taro caused by Epicoccum sorghinum in China. Plant Disease, 102(3), 682–682.

  66. Madrigal, C., Tadeo, J. L., & Melgarejo, P. (1991). Relationship between flavipin production by Epicoccum nigrum and antagonism against Monilinia laxa. Mycological Research, 95, 1375–1381.

    CAS  Article  Google Scholar 

  67. Madrigal, C., Pascual, S., & Melgarejo, P. (1994). Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathotogy, 43, 554–561.

    Article  Google Scholar 

  68. Mahadevakumar, S., Jayaramaiah, K. M., & Janardhana, G. R. (2014). First report of leaf spot disease caused by Epicoccum nigrum on Lablab purpureus in India. Plant Disease, 98, 284.

    CAS  PubMed  Article  Google Scholar 

  69. Mari, M., Torres, R., Casalini, L., Lamarca, N., Mandrin, J. F., Lichou, J., Larena, I., De Cal, M. A., Melgarejo, P., & Usall, J. (2007). Control of post-harvest brown rot on nectarine by Epicoccum nigrum and physico-chemical treatments. Journal of the Science of Food and Agriculture, 87, 1271–1277.

    CAS  Article  Google Scholar 

  70. Melgarejo, P., Carrillo, R., & Sagasta, E. (1985). MycoXora of peach twigs and flowers and its possible significance in biological control of Monilinia laxa. Transactions of the British Mycological Society, 85, 313–317.

    Article  Google Scholar 

  71. Mielnichuk, N., & Lopez, S. E. (2007). Interaction between Epicoccum purpurascens and xylophagous basidiomycetes on wood blocks. Forest Pathology, 37, 236–242.

    Article  Google Scholar 

  72. Musetti, R., Grisan, S., Polizzotto, R., Martini, M., Paduano, C., & Osler, R. (2011). Interactions between ‘Candidatus Phytoplasma Mali’ and the apple endophyte Epicoccum nigrum in Catharanthus roseus plants. Journal of Applied Microbiology, 110, 746–756.

    CAS  PubMed  Article  Google Scholar 

  73. Ogorek, R., & Plaskowska, E. (2011). Epicoccum nigrum for biocontrol agents in vitro of plant fungal pathogens. Communications in Agricultural and Applied Biological Sciences, 76, 691–697.

    CAS  PubMed  Google Scholar 

  74. Oliveira, R. C., Davenport, K. W., Hovde, B., Silva, D., Chain, P. S. G., Correa, B., & Rodrigues, D. F. (2017). Draft genome sequence of sorghum grain mold fungus Epicoccum sorghinum, a producer of tenuazonic acid. Genome Announcements, 5, e01495–e01416.

    PubMed  PubMed Central  Article  Google Scholar 

  75. Oliveira, R. C., Carnielli-Queiroz, L., & Correa, B. (2018a). Epicoccum sorghinum in food: Occurrence, genetic aspects and tenuazonic acid production. Current Opinion in Food Science, 23, 44–48.

    Article  Google Scholar 

  76. Oliveira, R. C., Nguyen, H. N., Mallmann, C. A., Freitas, R. S., Correa, B., & Rodrigues, D. F. (2018b). Influence of environmental factors on tenuazonic acid production by Epicoccum sorghinum: An integrative approach of field and laboratory conditions. Science of the Total Environment, 640, 1132–1138.

    Article  CAS  Google Scholar 

  77. Oliveira, R. C., Goncalves, S. S., Silva, C. D. C., Dilkin, P., Madrid, H., & Correa, B. (2019). Polyphasic characterization of Epicoccum sorghinum: A tenuazonic acid producer isolated from sorghum grain. International Journal of Food Microbiology, 292, 1–7.

    CAS  PubMed  Article  Google Scholar 

  78. Pandey, R. R., Arora, D. K., & Dubey, R. C. (1993). Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia, 124(1), 31–39.

  79. Park, J. Y., Okada, G., Takahashi, M., & Oyaizu, H. (2002). Screening of fungal antagonists against yellows of cabbage caused by Fusarium oxysporum f. sp. conglutinans. Mycoscience, 43, 0447–0451.

    Article  Google Scholar 

  80. Pascual, S., Magan, N., & Melgarejo, P. (1996). Improved biological control of peach twig blight by physiological manipulation of Epicoccum nigrum. Brighton Crop Protection Conference: Pests and Diseases. Proceedings of an International Conference, British Crop Protection Council, United Kingdom.

    Google Scholar 

  81. Peng, G., & Sutton, J. C. (1991). Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology, 13, 247–257.

    Article  Google Scholar 

  82. Perelló, A., Simón, M. R., Arambarri, A. M., & Cordo, C. A. (2001). Greenhouse screening of the saprophytic resident microflora for control of leaf spots of wheat (Triticum aestivum). Phytoparasitica, 29, 341–351.

    Article  Google Scholar 

  83. Pieckenstain, F. L., Bazzalo, M. E., Roberts, A. M. I., & Ugalde, R. A. (2001). Epicoccum purpurascens for biocontrol of Sclerotinia head rot of sunflower. Mycological Research, 105, 77–84.

    Article  Google Scholar 

  84. Royse, D. J., & Ries, S. M. (1978). The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68, 603–607.

    Article  Google Scholar 

  85. Sena, A. P. A., Chaibub, A. A., Cortes, M. V. C. B., Silva, G. B., Silva-Lobo, V. L., Prabhu, A. S., Filippi, M. C. C., & Araujo, L. G. (2013). Increased enzymatic activity in rice leaf blast suppression by crude extract of Epiccocum sp. Tropical Plant Pathology, 38, 387–397.

    Article  Google Scholar 

  86. Simay, E. I. (1990). Occurence of Epicoccum and Stemphylium leaf spot of Lens culinaris Lens-News Letters (ICARDA) Lentil Experimental News Service.

  87. Simay, E. I. (1991). Occurrence of Epicoccum and Stemphylium leaf spot of Lens culinaris Medik in Hungary. Lentin Experimental News Service, 17, 28–30.

    Google Scholar 

  88. Sisterna, M., & Lori, G. A. (2005). Fungal diseases of Lotus spp. in Argentina. Lotus Newsletter., 35(1), 15–16.

    Google Scholar 

  89. Stokholm, M. S., Wulff, E. G., Zida, E. P., Thio, I. G., Néya, J. B., Soalla, R. W., Głazowska, S. E., Andresen, M., Topbjerg, H. B., Boelt, B., & Lund, O. S. (2016). DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen. Microbiological Research, 191, 38–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. Taguiam, J. D. W., Evallo, E. S., Bengoa, J. C., Maghirang, R. G., & Balendres, M. A. O. (2020). Pathogenicity of Epicoccum sorghinum to dragon fruits (Hylocereus species) and in vitro evaluation of chemicals with antifungal activity. Journal of Phytopathology, 168, 303–310.

    CAS  Article  Google Scholar 

  91. Talontsi, F. M., Dittrich, B., Schüffler, A., Sun, H., & Laatsch, H. (2013). Epicoccolides: Antimicrobial and antifungal Polyketides from an Endophytic fungus Epicoccum sp. Associated with Theobroma cacao. European Journal of Organic Chemistry, 2013, 3174–3180.

    CAS  Article  Google Scholar 

  92. Vannini, A., Contarini, M., Faccoli, M., Valle, M. D., Rodriguez, C. M., Mazzetto, T., Guarneri, D., Vettraino, A. M., & Speranza, S. (2017). First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. EPPO Bulletin, 47, 100–103.

    Article  Google Scholar 

  93. Wright, A. D., Osterhage, C., & Konig, G. M. (2003). Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Orgic and Biomolecular Chemistry, 1, 507–510.

    CAS  Article  Google Scholar 

  94. Wu, D., Zhang, D. H., Timko, M. P., Li, M. Y., & Liang, G. L. (2017). First report of Epicoccum nigrum causing brown leaf spot of loquat in southwestern China. Plant Disease, 101, 1553.

    Article  Google Scholar 

  95. Yu, L., She, X. M., Lan, G. B., Tang, Y. F., Li, Z. G., Deng, M. G., & He, Z. F. (2019). First report of leaf spot caused by Epicoccum sorghinum on chinese flowering cabbage (Brassica parachinensis) in China. Plant Disease, 103, 2966.

    Article  Google Scholar 

  96. Yuan, G. Q., Liao, T., Tan, H. W., Li, Q. Q., & Lin, W. (2016). First report of leaf spot caused by Phoma sorghina on tobacco in China. Plant Disease, 100, 1790–1790.

    Article  Google Scholar 

  97. Zeng, H., Lu, Q., & Li, R. (2018). First report of leaf spot of lily caused by Epicoccum sorghinum in China. Plant Disease, 102, 2648.

    Article  Google Scholar 

  98. Zhou, T., & Reeleder, R. D. (1989). Application of Epicoccum purpurascens spores to control white mold of snap bean. Plant Disease, 73, 639–642.

    Article  Google Scholar 

  99. Zhou, T., Reeleder, R. D., & Sparace, S. A. (1991). Interactions between Sclerotinia sclerotiorum and Epicoccum purpurascens. Canadian Journal of Botany, 69, 2503–2510.

    Article  Google Scholar 

  100. Zhou, H., Liu, P. P., Qiu, S., Wei, S. J., Xia, K., & Gao, Q. (2017). Identity of Epicoccum sorghinum causing leaf spot disease of Bletilla striata in China. Plant Disease, 102, 1039.

    Article  Google Scholar 

Download references

Acknowledgments

Studies on Epicoccum of dragon fruits in the Philippines were supported by the Department of Agriculture-Bureau of Agricultural Research through a grant awarded to M.A. Balendres (N825921, 2019-2022) and the Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños. We thank Dr. Giovannie Del Frari of the University of Lisbon (Portugal), Prof. Yingjuan Chen of Southwest University (China) and Prof. R. Li of Yichun University (China), for providing the Epicoccum cultures and diseased plant photographs. The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Angelo Balendres.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taguiam, J.D., Evallo, E. & Balendres, M.A. Epicoccum species: ubiquitous plant pathogens and effective biological control agents. Eur J Plant Pathol (2021). https://doi.org/10.1007/s10658-021-02207-w

Download citation

Keywords

  • Epicoccum nigrum
  • E. purpurascens
  • Biological control agents