Fungal-derived extracts induce resistance against Botrytis cinerea in Arabidopsis thaliana

Abstract

Development of a sustainable agriculture is a current trend searching for alternative and more environmentally friendly strategies to control crop diseases. The necrotrophic fungus Botrytis cinerea, the causal agent of grey mould, affects crops pre- and post-harvest and cause huge economical losses. Microorganisms and microbially-derived elicitors are known to induce plant defences. Here, we study two fungal extracts derived from Colletotrichum acutatum (isolate M11). The crude extract, called CF (culture filtrate) and the semi-purified fraction ACF (axenic culture filtrate) consist in a blend of fungal-derived elicitors. Their activities were evaluated in the plant-pathogen system Arabidopsis thaliana-B. cinerea. Both CF and ACF induced local and systemic resistance, rendering A. thaliana resistant against grey mould disease. The extracts showed no antifungal activity since no inhibition of mycelium growth, changes in hyphal ultrastructure or damage in cell membrane permeability were observed. These findings would indicate that the protective effect was indirect and it was found that CF and ACF induced up-regulation of the defence-related genes PR1, WRKY70 and ERF6, as well as giving local callose deposition in treated leaves. Both fungal extracts have the potential to be used as a main component of a biologically based disease control product with activity against grey mould, with the advantage that the purification process of CF is simpler than for ACF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. AbuQamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, S. A., & Mengiste, T. (2006). Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant Journal, 48, 28–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baccelli, I., Lombardi, L., Luti, S., Bernardi, R., Picciarelli, P., Scala, A., & Pazzagli, L. (2014). Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis. PLoS One, 9(6), e100959.

    PubMed  PubMed Central  Google Scholar 

  3. Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging insights into the functions of pathogenesis-related protein 1. Trends in Plant Science, 22, 871–879.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Caro, M. d. P., Holton, N., Conti, G., Venturuzzi, A. L., Martínez-Zamora, M. G., Zipfel, C., Asurmendi, S., & Díaz-Ricci, J. C. (2020). The fungal subtilase AsES elicits a PTI-like defence response in Arabidopsis thaliana plants independently of its enzymatic activity. Molecular Plant Pathology, 21, 147–159. https://doi.org/10.1111/mpp.12881.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Chalfoun, N. R., Grellet, C. F., Martinez-Zamora, M. G., Diaz-Perales, A., Castagnaro, A. P., & Díaz-Ricci, J. C. (2013). Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor. Journal of Biological Chemistry, 288, 14098–14113.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chalfoun, N. R., Durman, S. B., Budeguer, F., Caro, M. P., Bertani, R. P., Di Peto, P., Stenglein, S. A., Filippone, M. P., Moretti, E. R., Díaz-Ricci, J. C., Welin, B., & Castagnaro, A. P. (2018a). Development of PSP1, a biostimulant based on the elicitor AsES for disease management in monocot and dicot crops. Frontiers in Plant Science, 9, 844.

    PubMed  PubMed Central  Google Scholar 

  7. Chalfoun, N. R., Durman, S. B., González-Montaner, J., Reznikov, S., De Lisi, V., González, V., Moretti, E. R., Devani, M. R., Ploper, L. D., Castagnaro, A. P., & Welin, B. (2018b). Elicitor-based biostimulant PSP1 protects soybean against late season diseases in field trials. Frontiers in Plant Science, 9, 763.

    PubMed  PubMed Central  Google Scholar 

  8. Chen, Z., Wang, J., Li, Y., Zhong, Y., Liao, J., Lu, S., Wang, L., Wang, X., & Chen, S. (2018). Dry mycelium of Penicillium chrysogenum activates defense via gene regulation of salicylic acid and jasmonic acid signaling in Arabidopsis. Physiological and Molecular Plant Pathology., 103, 54–61.

    CAS  Google Scholar 

  9. Claverie, J., Balacey, S., Lemaître-Guillier, C., Daphnée Brulé, D., Chiltz, A., Granet, L., Noirot, E., Daire, X., Darblade, B., Héloir, M. C., & Poinssot, B. (2018). The cell wall-derived Xyloglucan is a new DAMP triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Frontiers in Plant Science., 9, 1725.

    PubMed  PubMed Central  Google Scholar 

  10. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430.

    PubMed  PubMed Central  Google Scholar 

  11. Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2013). InfoStat versión 2013. Resource document. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  12. Feng, H., Xia, W., Shan, C., Zhou, T., Cai, W., & Zhang, W. (2015). Quaternized chitosan oligomers as novel elicitors inducing protection against B. cinerea in Arabidopsis. International Journal of Biological Macromolecules., 72, 364–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. fgStatistics (2009). Resource document. In: Di Rienzo J. A., editor. pp. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina. https://sites.google.com/site/fgstatistics/

  14. Frías, M., González, C., & Brito, N. (2011). BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. The New Phytologist, 192(2), 483–495.

    PubMed  PubMed Central  Google Scholar 

  15. Frías, M., Brito, N., & González, C. (2013). The Botrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance (SAR) in tobacco and generates a wave of salicylic acid expanding from the site of application. Molecular Plant Pathology, 14(2), 191–196.

    PubMed  PubMed Central  Google Scholar 

  16. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Granado, J., Felix, G., & Boller, T. (1995). Perception of fungal sterols in plants (Subnanomolar concentrations of Ergosterol elicit extracellular Alkalinization in tomato cells). Plant Physiology, 107, 485–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P., & Diaz-Ricci, J. C. (2012). Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiology and Biochemistry, 54, 10–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hael Conrad, V., Abou-Mansour, E., Diaz-Ricci, J. C., Métraux, J. P., & Serrano, M. (2015). The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana. Plant Science, 241, 120–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hael Conrad, V., Perato, S. M., Arias, M. E., Martinez-Zamora, M. G., Di Peto, P. L. A., Martos, G. G., Castagnaro, A. P., Díaz-Ricci, J. C., & Chalfoun, N. R. (2017). The elicitor protein AsES induces a systemic acquired resistance response accompanied by systemic microbursts and micro-HRs in Fragaria ananassa. Molecular Plant-Microbe Interactions, 31(1), 46–60.

    PubMed  PubMed Central  Google Scholar 

  21. Henry, G., Thonart, P., & Ongena, M. (2012). PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnology, Agronomy, Society and Environment, 16(2), 257–268.

    Google Scholar 

  22. Jacobs, A. K., Volker, L., Burton, R. A., Panstruga, R., Strizhov, N., Schulze-Lefert, P., & Fincher, G. B. (2003). An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. The Plant Cell., 15(11), 2503–2513.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Klemptner, R. L., Sherwood, J. S., Tugizimana, F., Dubery, I. A., & Piater, L. A. (2014). Ergosterol as a MAMP. Molecular Plant Pathology, 15(7), 747–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Koornneef, A., & Pieterse, C. M. J. (2009). Cross talk in defense signaling. Plant Physiology, 146, 839–844.

    Google Scholar 

  25. Laquitaine, L., Gomes, E., François, J., Marchive, C., Pascal, S., Hamdi, S., Rossitza, A., Serge, D., & Pierre, C. T. (2006). Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Molecular Plant-Microbe Interactions., 19(10), 1103–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, J., Brader, G., & Palva, E. T. (2004). The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 16, 319–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maffei, M. E., Arimura, G., & Mithofer, A. (2012). Natural elicitors, effectors and modulators of plant responses. Natural Products Reports., 29(11), 1288–1303.

    CAS  Google Scholar 

  28. Meng, X., Xu, J., He, Y., Yang, K. Y., Mordorski, B., Liu, Y., & Zhang, S. (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. The Plant Cell, 25(3), 1126–1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moffat, C. S., Ingle, R. A., Wathugala, D. L., Saunders, N. J., Knight, H., & Knight, M. R. (2012). ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS One, 7(4), e35995.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Monjil, M. S., Nozawa, T., Shibata, Y., Takemoto, D., Ojika, M., & Kawakita, K. (2015). Methanol extract of mycelia from Phytophthora infestans-induced resistance in potato. Comptes Rendus Biologies., 338(3), 185–196.

    PubMed  PubMed Central  Google Scholar 

  31. Nie, P., Li, X., Wang, S., Guo, J., Zhao, H., & Niu, D. (2017). Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Frontiers in Plant Science., 8, 238.

    PubMed  PubMed Central  Google Scholar 

  32. Olmedo, M. G., González, M. M., Cabrerizo, F. M., Rapisarda, V. A., & Volentini, S. I. (2017). Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea. Food Microbiology, 62, 9–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Perato, S. M., Martínez-Zamora, M. G., Salazar, S. M., & Díaz-Ricci, J. C. (2018). The elicitor AsES stimulates ethylene synthesis, induce ripening and enhance protection against disease naturally produced in avocado fruit. Scientia Horticulturae., 240, 288–292.

    CAS  Google Scholar 

  34. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real- time RT-PCR. Nucleic Acid Research., 29, e45.

    CAS  Google Scholar 

  35. Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science., 7, 760.

    PubMed  PubMed Central  Google Scholar 

  36. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemistry Biology., 5, 308–316.

    CAS  Google Scholar 

  37. Riechmann, J. L., & Meyerowitz, E. M. (1998). The AP2/EREBP family of plant transcription factors. Biological Chemistry, 379, 633–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruijter, J. M., Ramakers, C., Hoogaars, W. M., Karlen, Y., Bakker, O., van den Hoff, M. J., & Moorman, A. F. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research., 37(6), e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8(10), 1809–1819.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Salazar, S., Castagnaro, A., Arias, M., Chalfoun, N. R., Tonello, U., & Diaz-Ricci, J. C. (2007). Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. European Journal of Plant Pathology., 117(2), 109–122.

    Google Scholar 

  41. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods., 671, 671–675. https://doi.org/10.1038/nmeth.2089.

    CAS  Article  Google Scholar 

  42. Sewelam, N., Kazan, K., & Schenk, P. M. (2016). Global plant stress signaling: reactive oxygen species at the cross-road. Frontiers in Plant Science., 7, 187.

    PubMed  PubMed Central  Google Scholar 

  43. Stegmann, M., Monaghan, J., Smakowska-Luzan, E., Rovenich, H., Lehner, A., Holton, N., Belkhadir, Y., & Zipfel, C. (2017). The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science., 355(6322), 287–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomma, B. P., Penninckx, I. A., Broekaert, W. F., & Cammue, B. P. (2001). The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology., 13(1), 63–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Thuerig, B., Felix, G., Binder, A., Boller, T., & Tamm, L. (2005). An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signalling pathways. Physiological and Molecular Plant Pathology., 67(3–5), 180–193.

    Google Scholar 

  46. Trotel-Aziz, P., Couderchet, M., Vernet, G., & Aziz, A. (2006). Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. European Journal of Plant Pathology., 114(4), 405–413.

    CAS  Google Scholar 

  47. Trouvelot, S., Héloir, M. C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., Combier, M., Trdá, L., Daire, X., & Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in Plant Science., 5, 592.

    PubMed  PubMed Central  Google Scholar 

  48. UNDP. (2015). Institutional arrangements. United Nations Development Programme. http://www.undp.org/content/undp/en/home/ourwork/capacitybuilding/drivers_of_change/institut_arrangemt

  49. Vatsa, P., Chiltz, A., Luini, E., Vandelle, E., Pugin, A., & Roblin, G. (2011). Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells. Plant Physiology Biochemistry., 49(7), 764–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Veronese, P., Nakagami, H., Bluhm, B., AbuQamar, S., Chen, X., Salmeron, J., Dietrich, R. A., Hirt, H., & Mengiste, T. (2006). The membrane-anchored BOTRYTIS-INDUCEDKINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. The Plant Cell, 18, 257–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science., 5, 655.

    PubMed  PubMed Central  Google Scholar 

  52. Yang, Y., Zhang, H., Li, G., Li, W., Wang, X., & Song, F. (2009). Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Plant Biotechnology Journal., 7(8), 763–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y., Yang, X., Zeng, H., Guo, L., Yuan, J., & Qiu, D. (2014). Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana. Biotechnology Letters, 36(5), 1069–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y., Gao, Y., Liang, Y., Dong, Y., Yang, X., Yuan, J., & Qiu, D. (2017). The Verticillium dahliae SnodProt1-like protein VdCP1 contributes to virulence and triggers the plant immune system. Frontiers in Plant Science., 8, 1880.

    PubMed  PubMed Central  Google Scholar 

  55. Zhong, Y., Peng, J., Chen, Z., Xie, H., Luo, D., Dai, J. R., Yan, F., Wang, J. G., Dong, H. Z., & Chen, S. Y. (2015). Dry mycelium of Penicillium chrysogenum activates defense responses and restricts the spread of tobacco mosaic virus in tobacco. Physiological and Molecular Plant Pathology., 103, 54–61.

    Google Scholar 

Download references

Acknowledgements

This paper was partially supported with grants of the Universidad Nacional de Tucumán (PIUNT 26/D642), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-0653), CONICET (PUE-2016-0104) and INTA (PNHFA 1106073 and TUSGO 1231101). VHC is postdoctoral CONICET fellow, RHTG and FJRS are Ph.D. CONICET fellows, SM and JCDR are CONICET researchers, and SMS is INTA researcher.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Hael Conrad.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The manuscript has not been published and is not under consideration for publication elsewhere. All authors have approved the manuscript and agreed to submit the paper to the European Journal of Plant Pathology. The research was conducted in the absence of any commercial relationships that could be considered as a potential conflict of interest.

Electronic supplementary material

ESM 1

(PDF 82 kb)

ESM 2

(PDF 146 kb)

ESM 3

(PDF 210 kb)

ESM 4

(PDF 77 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hael Conrad, V., Tomas Grau, R.H., Moschen, S.N. et al. Fungal-derived extracts induce resistance against Botrytis cinerea in Arabidopsis thaliana. Eur J Plant Pathol (2020). https://doi.org/10.1007/s10658-020-02054-1

Download citation

Keywords

  • Fungal extracts
  • Elicitors
  • Botrytis cinerea
  • Arabidopsis thaliana
  • Local-acquired resistance
  • Systemic-acquired resistance