Skip to main content

Advertisement

Log in

Comparing the efficiency of conventional and novel methods of virus elimination using molecular techniques

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Viral pathogens significantly affect pear growth and reduce annual production across the world. This study aimed to examine whether conventional virus elimination methods, including thermotherapy (0, 7, 14 and 21 d at 38 °C), meristem culture (less than 0.2 mm, between 0.2 to 0.7 mm and larger than 0.7 mm) and adventitious shoot regeneration from leaf explants can lead to virus-free pear seedlings when compared to chemotherapy (sodium nitroprusside (SNP); 0, 10, 17, 25, 50 and 70 μM). Five pear cultivars (“Abate Fetel”, “Beiruti”, “Dargazi”, “Coscia” and “Louise Bonne”) were investigated to check if those treatments are capable of eliminating three key viruses in pear, namely Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV). The plant’s infection to the viruses was examined using reverse transcription polymerase chain reaction (RT-PCR), followed by applying the treatments, meristem culture and in vitro cultivation. Results surprisingly showed a direct relationship between an increase in duration of thermotherapy and virus elimination. Moreover, it was shown that small size of the cultivated meristem increased the rate of virus elimination, even though the responses were different in terms of the cultivars and viruses. Shoot regeneration had very low efficiency in leaf explants as it could only eliminate ASPV from pear explants. Interestingly, the experiment demonstrated that nitric oxide treatments were more effective in virus elimination than the other treatments. A year later, samples that were diagnosed virus-free were proliferated, rooted and transferred into pots to be used for later propagation and establishment of a mother orchard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdollahi, H. (2011). Pear, botany, cultivars and rootstocks. Tehran, Iran: Ministry of Jihad-e-Agriculture.

    Google Scholar 

  • Abdollahi, H., Muleo, R., & Rugini, E. (2006). Optimisation of regeneration and maintenance of morphogenic callus in pear (Pyrus communis L.) by simple and double regeneration techniques. Scientia Horticulturae, 108(4), 352–358.

    Article  CAS  Google Scholar 

  • Adams, M. J., Antoniw, J. F., Bar-Joseph, M., Brunt, A. A., Candresse, T., Foster, G. D., Martelli, G. P., Milne, R. G., & Fauquet, C. M. (2004). The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Archives of Virology, 149(5), 1045–1060.

    Article  CAS  PubMed  Google Scholar 

  • Ayabe, M., & Sumi, S. (2001). A novel and efficient tissue culture method “stem-disc dome culture”—For producing virus-free garlic (Allium sativum L.). Plant Cell Reports, 20, 503–507.

    Article  CAS  Google Scholar 

  • Asai, S., & Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22, 619–629. https://doi.org/10.1094/MPMI-22-6-0619.

    Article  PubMed  Google Scholar 

  • Carr, J. P., Lewsey, M. G., & Palukaitis, P. (2010). Signaling in induced resistance. Advances in Virus Research, 76, 57–121. https://doi.org/10.1016/S0065-3527(10)76003-6.

    Article  CAS  PubMed  Google Scholar 

  • Cheong, E. J., Mock, R., & Li, R. (2012). Elimination of five viruses from sugarcane using in vitro culture of axillary buds and apical meristems. Plant Cell Tissue Organ Culture, 109(3), 439–445.

    Article  Google Scholar 

  • Deng, X. Y., Hong, N., Hu, H. J., & Wang, G. P. (2004). Detection of latent viruses in Pyrus pyrifolia by IC-RT-PCR and TC-RT-PCR. International Journal of Fruit Science, 21, 569–572.

    Google Scholar 

  • Food and Agriculture Organization. (2016). FAOSTAT. Retrieved May 1, 2012, from http://www.fao.org/statistics/en.

  • Fu, L. J., Shi, K., Gu, M., Zhou, Y. H., Dong, D. K., Liang, W. S., Song, F. M., & Yu, J. Q. (2010). Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato–tobacco mosaic virus interaction. Molecular Plant-Microbe Interactions, 23, 39–48. https://doi.org/10.1094/MPMI-23-1-0039.

    Article  CAS  PubMed  Google Scholar 

  • Gambino, G., Bondaz, J., & Gribaudo, I. (2006). Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. European Journal of Plant Pathology, 114, 397–404.

    Article  Google Scholar 

  • Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160–168. https://doi.org/10.1016/j.tplants.2010.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Han, X. J., Yang, H. Q., Duan, K. X., Zhang, X. R., Zhao, H. Z., You, S. Z., & Jiang, Q. Q. (2009). Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets. Plant Cell, Tissue and Organ Culture, 96, 29–34. https://doi.org/10.1007/s11240-008-9456-z.

    Article  CAS  Google Scholar 

  • Hu, G. J., Hong, N., Wang, L. P., Hu, H. J., & Wang, G. P. (2012). Efficacy of virus elimination from in vitro cultured sand pear (Pyrus pyrifolia) by chemotherapy combined with thermotherapy. Crop Protection, 37, 20–25.

    Article  Google Scholar 

  • Hu, G., Dong, Y., Zhang, Z., Fan, X., Ren, F., & Zhou, J. (2015). Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture, 121, 435–443.

    Article  CAS  Google Scholar 

  • Kazemi, N., Zaree, N. F., Habashi, A. A., & Asadi, W. (2019). Molecular assessment of chemotherapy and meristem culture efficiency for production of seven cultivars of virus-free pear (Pyrus communis L.). Journal of crops improvement, 21(1), 107–118 (In Farsi). https://doi.org/10.22059/JCI.2018.267050.2095.

    Article  Google Scholar 

  • Kers, J. A., Wach, M. J., Krasnoff, S. B., Widom, J., Cameron, K. D., Bukhalid, R. A., Gibson, D. M., Crane, B. R., & Loria, R. (2004). Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature, 429(6987), 79–82. https://doi.org/10.1038/nature02504.

    Article  CAS  PubMed  Google Scholar 

  • Komorowska, B., Malinowski, T., & Michalczuk, L. (2010). Evaluation of several RT-PCR primer pairs for the detection of apple stem pitting virus. Journal of Virological Methods, 168, 242–247.

    Article  CAS  PubMed  Google Scholar 

  • Komorowska, B., Siedlecki, P., Kaczanowski, S., Hasiow-Jaroszewska, B., & Malinowski, T. (2011). Sequence diversity and potential recombination events in the coatprotein gene of apple stem pitting virus. Virus Research, 158, 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Laimer, M., & Barba, M. (2011). Elimination of systemic pathogens by thermotherapy, tissue culture, or in vitro micrografting, Virus and Virus-Like Diseases of Pome and Stone Fruits (pp. 389–393). St. Paul: APS Press.

    Google Scholar 

  • Li, B.-Q., Feng, F.-C., Hu, L.-Y., Wang, M.-R., & Wang, Q.-C. (2016). Shoot tip culture and cryopreservation for eradication of apple stem pitting virus (ASPV) and apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Annals of Applied Biology, 168, 142–150.

    Article  CAS  Google Scholar 

  • Maliogka, V. I., Skiada, F. G., Eleftheriou, E. P., & Katis, N. I. (2009). Elimination of a new ampelovirus (GLRaV-Pr) and grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Scientia Horticulturae, 123, 280–282.

    Article  Google Scholar 

  • Mathioudakis, M. M., Maliogka, V. I., Dovas, C. I., Paunovi’c, S., & Katis, N. I. (2008). Reliable RT-PCR detection of apple stem pitting virus in pome fruits and its associationwith quince fruit deformation disease. Plant Pathology, 58, 228–236.

    Article  Google Scholar 

  • Masoomi-Aladizgeh, F., Jabbari, L., Khayam Nekouei, R., Aalami, A., (2016). A simple and rapid system for DNA and RNA isolation from diverse plants using handmade kit. Nature, Protocol Exchange, A Simple and Rapid System for DNA and RNA Isolation from Diverse Plants Using Handmade Kit.

  • Moreau, M., Lindermayr, C., Durner, J., & Klessig, D. F. (2010). NO synthesis and signaling in plants-where do we stand? Physiologia Plantarum, 138, 372–383. https://doi.org/10.1111/j.1399-3054.2009.01308.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Paprstein, F., Sedlak, J., Polak, J., Svobodova, L., Hassan, M., & Bryxiova, M. (2008). Results of in vitro thermotherapy of apple cultivars. Plant Cell Tissue Organ, 94(3), 347–352.

    Article  Google Scholar 

  • Plopa, C., & Preda, S. (2013). Elimination of apple mosaic virus by tissue culture of some infected apple cultivars. Acta Horticulturea, 981, 517–522.

    Article  Google Scholar 

  • Prokhnevsky, A. I., Peremyslov, V. V., Napuli, A. J., & Dolja, V. V. (2002). Interaction between long-distance transport factor and Hsp70- related movement protein of beet yellows virus. Virology, 76, 11003–11011.

    Article  CAS  Google Scholar 

  • Quoirin, M., & Lepoivre, P. (1977). Improved medium for in vitro culture of Prunus sp. Acta Horticulturea, 78, 437–442.

    Article  Google Scholar 

  • Quecini, V., Lopes, M. L., Pacheco, F. T. H., & Ongarelli, M. D. G. (2008). Ribavirin, a guanosine analogue mammalian antiviral agent, impairs tomato spotted wilt virus multiplicationin tobacco cell cultures. Archives of Phytopathology and Plant Protection, 41, 1–13. https://doi.org/10.1080/03235400600628047.

    Article  CAS  Google Scholar 

  • Rana, T., Chandel, L. V., Kumar, Y., Ram, R., Hallan, V., & Zaidi, A. A. (2010). Molecular variability analyses of apple chlorotic leaf spot virus capsid protein. Journal of Biosciences, 35, 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Retheesh, S. T., & Bhat, A. I. (2010). Simultaneous elimination of cucumber mosaic virus and Cymbidium mosaic virus infecting Vanilla planifolia through meristem culture. Crop Protection, 29, 1214–1217.

    Article  Google Scholar 

  • Sareila, O., Hohkuri, M., Wahlroos, T., & Susi, P. (2004). Role of viral movement and coat proteins and RNA in phloem-dependent movement and phloem unloading of tobamoviruses. Phytopathology, 152, 622–629.

    Article  CAS  Google Scholar 

  • Sedlak, J., Paprstein, F., & Talacko, L. (2011). Elimination of apple stem pitting virus from pear cultivars by in vitro chemotherapy. Acta Horticulturea, 923, 111–115.

    Article  CAS  Google Scholar 

  • Scheler, C., Durner, J., & Astier, J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Current Opinion in Plant Biology, 16, 534–539. https://doi.org/. https://doi.org/10.1016/j.pbi.2013.06.020.

    Article  CAS  PubMed  Google Scholar 

  • Schlicht, M., & Kombrink, E. (2013). The role of nitric oxide in the interaction of Arabidopsis thaliana with the biotrophic fungi, Golovinomyces orontii and Erysiphe pisi. Frontiers in Plant Science, 4, 351. https://doi.org/10.3389/fpls.2013.00351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, Y., Hong, N., Wang, L., Hu, H., Tian, R., Xu, W., Ding, F., & Wang, G. (2011). Molecularand serological diversity in apple chlorotic leaf spot virus from sand pear (Pyruspyrifolia) in China. Eur. J. Plant Pathology, 130, 183–196.

    Article  CAS  Google Scholar 

  • Song, F. M., & Goodman, R. M. (2001). Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Molecular Plant-Microbe Interactions, 14, 1458–1462. https://doi.org/10.1094/MPMI.2001.14.12.1458.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Sun, H., & Bell, R. L. (2009). Effect of polyvinyl alcohol on in vitro rooting capacity of shoots in pear clones (Pyrus communis L.) of different ploidy. Plant Cell Tissue Organ Culture, 99, 299–304.

    Article  CAS  Google Scholar 

  • Tan, R. R., Wang, L. P., Hong, N., & Wang, G. P. (2010). Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tissue Organ Culture, 101, 229–235.

    Article  Google Scholar 

  • Tatineni, S., Afunian, M. R., Hilf, M. E., Gowda, S., Dawson, W. O., & Garnsey, S. M. (2009). Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees: Complete genome sequence and development of biologically active in vitro transcripts. Am. Phytopathol. Soc., 99, 423–431.

    Article  CAS  Google Scholar 

  • Wach, M. J., Kers, J. A., Krasnoff, S. B., Loria, R., & Gibson, D. M. (2005). Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin a, a nitrated phytotoxin produced by Streptomyces spp. Nitric Oxide, 12, 46–53. https://doi.org/10.1016/j.niox.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q. C., & Valkonen, J. P. T. (2008). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods, 154, 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q. C., Cuellar, W. J., Rajamäki, M., Hirata, Y., & Valkonen, J. P. T. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: Relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 8, 1–14.

    CAS  Google Scholar 

  • Wang, L. P., Wang, G. P., Hong, N., Tang, R. R., & Deng, X. Y. (2006). Effect of thermotherapy on elimination of apple stem grooving virus and apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. Hortscience, 41, 729–732.

    Article  Google Scholar 

  • Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., Khan, M. A., Tao, S., Korban, S. S., Wang, H., & Chen, N. J. (2013). The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 23(2), 396–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nooshin Kazemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, N., Zaare Nahandi, F., Habashi, A.A. et al. Comparing the efficiency of conventional and novel methods of virus elimination using molecular techniques. Eur J Plant Pathol 157, 887–897 (2020). https://doi.org/10.1007/s10658-020-02048-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02048-z

Keywords

Navigation