Comparing the efficiency of conventional and novel methods of virus elimination using molecular techniques

Abstract

Viral pathogens significantly affect pear growth and reduce annual production across the world. This study aimed to examine whether conventional virus elimination methods, including thermotherapy (0, 7, 14 and 21 d at 38 °C), meristem culture (less than 0.2 mm, between 0.2 to 0.7 mm and larger than 0.7 mm) and adventitious shoot regeneration from leaf explants can lead to virus-free pear seedlings when compared to chemotherapy (sodium nitroprusside (SNP); 0, 10, 17, 25, 50 and 70 μM). Five pear cultivars (“Abate Fetel”, “Beiruti”, “Dargazi”, “Coscia” and “Louise Bonne”) were investigated to check if those treatments are capable of eliminating three key viruses in pear, namely Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV). The plant’s infection to the viruses was examined using reverse transcription polymerase chain reaction (RT-PCR), followed by applying the treatments, meristem culture and in vitro cultivation. Results surprisingly showed a direct relationship between an increase in duration of thermotherapy and virus elimination. Moreover, it was shown that small size of the cultivated meristem increased the rate of virus elimination, even though the responses were different in terms of the cultivars and viruses. Shoot regeneration had very low efficiency in leaf explants as it could only eliminate ASPV from pear explants. Interestingly, the experiment demonstrated that nitric oxide treatments were more effective in virus elimination than the other treatments. A year later, samples that were diagnosed virus-free were proliferated, rooted and transferred into pots to be used for later propagation and establishment of a mother orchard.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdollahi, H. (2011). Pear, botany, cultivars and rootstocks. Tehran, Iran: Ministry of Jihad-e-Agriculture.

    Google Scholar 

  2. Abdollahi, H., Muleo, R., & Rugini, E. (2006). Optimisation of regeneration and maintenance of morphogenic callus in pear (Pyrus communis L.) by simple and double regeneration techniques. Scientia Horticulturae, 108(4), 352–358.

    CAS  Article  Google Scholar 

  3. Adams, M. J., Antoniw, J. F., Bar-Joseph, M., Brunt, A. A., Candresse, T., Foster, G. D., Martelli, G. P., Milne, R. G., & Fauquet, C. M. (2004). The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Archives of Virology, 149(5), 1045–1060.

    CAS  Article  Google Scholar 

  4. Ayabe, M., & Sumi, S. (2001). A novel and efficient tissue culture method “stem-disc dome culture”—For producing virus-free garlic (Allium sativum L.). Plant Cell Reports, 20, 503–507.

    CAS  Article  Google Scholar 

  5. Asai, S., & Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22, 619–629. https://doi.org/10.1094/MPMI-22-6-0619.

    Article  PubMed  Google Scholar 

  6. Carr, J. P., Lewsey, M. G., & Palukaitis, P. (2010). Signaling in induced resistance. Advances in Virus Research, 76, 57–121. https://doi.org/10.1016/S0065-3527(10)76003-6.

    CAS  Article  PubMed  Google Scholar 

  7. Cheong, E. J., Mock, R., & Li, R. (2012). Elimination of five viruses from sugarcane using in vitro culture of axillary buds and apical meristems. Plant Cell Tissue Organ Culture, 109(3), 439–445.

    Article  Google Scholar 

  8. Deng, X. Y., Hong, N., Hu, H. J., & Wang, G. P. (2004). Detection of latent viruses in Pyrus pyrifolia by IC-RT-PCR and TC-RT-PCR. International Journal of Fruit Science, 21, 569–572.

    Google Scholar 

  9. Food and Agriculture Organization. (2016). FAOSTAT. Retrieved May 1, 2012, from http://www.fao.org/statistics/en.

  10. Fu, L. J., Shi, K., Gu, M., Zhou, Y. H., Dong, D. K., Liang, W. S., Song, F. M., & Yu, J. Q. (2010). Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato–tobacco mosaic virus interaction. Molecular Plant-Microbe Interactions, 23, 39–48. https://doi.org/10.1094/MPMI-23-1-0039.

    CAS  Article  PubMed  Google Scholar 

  11. Gambino, G., Bondaz, J., & Gribaudo, I. (2006). Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. European Journal of Plant Pathology, 114, 397–404.

    Article  Google Scholar 

  12. Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160–168. https://doi.org/10.1016/j.tplants.2010.11.007.

    CAS  Article  PubMed  Google Scholar 

  13. Han, X. J., Yang, H. Q., Duan, K. X., Zhang, X. R., Zhao, H. Z., You, S. Z., & Jiang, Q. Q. (2009). Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets. Plant Cell, Tissue and Organ Culture, 96, 29–34. https://doi.org/10.1007/s11240-008-9456-z.

    CAS  Article  Google Scholar 

  14. Hu, G. J., Hong, N., Wang, L. P., Hu, H. J., & Wang, G. P. (2012). Efficacy of virus elimination from in vitro cultured sand pear (Pyrus pyrifolia) by chemotherapy combined with thermotherapy. Crop Protection, 37, 20–25.

    Article  Google Scholar 

  15. Hu, G., Dong, Y., Zhang, Z., Fan, X., Ren, F., & Zhou, J. (2015). Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture, 121, 435–443.

    CAS  Article  Google Scholar 

  16. Kazemi, N., Zaree, N. F., Habashi, A. A., & Asadi, W. (2019). Molecular assessment of chemotherapy and meristem culture efficiency for production of seven cultivars of virus-free pear (Pyrus communis L.). Journal of crops improvement, 21(1), 107–118 (In Farsi). https://doi.org/10.22059/JCI.2018.267050.2095.

    Article  Google Scholar 

  17. Kers, J. A., Wach, M. J., Krasnoff, S. B., Widom, J., Cameron, K. D., Bukhalid, R. A., Gibson, D. M., Crane, B. R., & Loria, R. (2004). Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature, 429(6987), 79–82. https://doi.org/10.1038/nature02504.

    CAS  Article  PubMed  Google Scholar 

  18. Komorowska, B., Malinowski, T., & Michalczuk, L. (2010). Evaluation of several RT-PCR primer pairs for the detection of apple stem pitting virus. Journal of Virological Methods, 168, 242–247.

    CAS  Article  Google Scholar 

  19. Komorowska, B., Siedlecki, P., Kaczanowski, S., Hasiow-Jaroszewska, B., & Malinowski, T. (2011). Sequence diversity and potential recombination events in the coatprotein gene of apple stem pitting virus. Virus Research, 158, 263–267.

    CAS  Article  Google Scholar 

  20. Laimer, M., & Barba, M. (2011). Elimination of systemic pathogens by thermotherapy, tissue culture, or in vitro micrografting, Virus and Virus-Like Diseases of Pome and Stone Fruits (pp. 389–393). St. Paul: APS Press.

    Google Scholar 

  21. Li, B.-Q., Feng, F.-C., Hu, L.-Y., Wang, M.-R., & Wang, Q.-C. (2016). Shoot tip culture and cryopreservation for eradication of apple stem pitting virus (ASPV) and apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Annals of Applied Biology, 168, 142–150.

    CAS  Article  Google Scholar 

  22. Maliogka, V. I., Skiada, F. G., Eleftheriou, E. P., & Katis, N. I. (2009). Elimination of a new ampelovirus (GLRaV-Pr) and grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Scientia Horticulturae, 123, 280–282.

    Article  Google Scholar 

  23. Mathioudakis, M. M., Maliogka, V. I., Dovas, C. I., Paunovi’c, S., & Katis, N. I. (2008). Reliable RT-PCR detection of apple stem pitting virus in pome fruits and its associationwith quince fruit deformation disease. Plant Pathology, 58, 228–236.

    Article  Google Scholar 

  24. Masoomi-Aladizgeh, F., Jabbari, L., Khayam Nekouei, R., Aalami, A., (2016). A simple and rapid system for DNA and RNA isolation from diverse plants using handmade kit. Nature, Protocol Exchange, A Simple and Rapid System for DNA and RNA Isolation from Diverse Plants Using Handmade Kit.

  25. Moreau, M., Lindermayr, C., Durner, J., & Klessig, D. F. (2010). NO synthesis and signaling in plants-where do we stand? Physiologia Plantarum, 138, 372–383. https://doi.org/10.1111/j.1399-3054.2009.01308.

    CAS  Article  PubMed  Google Scholar 

  26. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    CAS  Article  Google Scholar 

  27. Paprstein, F., Sedlak, J., Polak, J., Svobodova, L., Hassan, M., & Bryxiova, M. (2008). Results of in vitro thermotherapy of apple cultivars. Plant Cell Tissue Organ, 94(3), 347–352.

    Article  Google Scholar 

  28. Plopa, C., & Preda, S. (2013). Elimination of apple mosaic virus by tissue culture of some infected apple cultivars. Acta Horticulturea, 981, 517–522.

    Article  Google Scholar 

  29. Prokhnevsky, A. I., Peremyslov, V. V., Napuli, A. J., & Dolja, V. V. (2002). Interaction between long-distance transport factor and Hsp70- related movement protein of beet yellows virus. Virology, 76, 11003–11011.

    CAS  Article  Google Scholar 

  30. Quoirin, M., & Lepoivre, P. (1977). Improved medium for in vitro culture of Prunus sp. Acta Horticulturea, 78, 437–442.

    Article  Google Scholar 

  31. Quecini, V., Lopes, M. L., Pacheco, F. T. H., & Ongarelli, M. D. G. (2008). Ribavirin, a guanosine analogue mammalian antiviral agent, impairs tomato spotted wilt virus multiplicationin tobacco cell cultures. Archives of Phytopathology and Plant Protection, 41, 1–13. https://doi.org/10.1080/03235400600628047.

    CAS  Article  Google Scholar 

  32. Rana, T., Chandel, L. V., Kumar, Y., Ram, R., Hallan, V., & Zaidi, A. A. (2010). Molecular variability analyses of apple chlorotic leaf spot virus capsid protein. Journal of Biosciences, 35, 605–615.

    CAS  Article  Google Scholar 

  33. Retheesh, S. T., & Bhat, A. I. (2010). Simultaneous elimination of cucumber mosaic virus and Cymbidium mosaic virus infecting Vanilla planifolia through meristem culture. Crop Protection, 29, 1214–1217.

    Article  Google Scholar 

  34. Sareila, O., Hohkuri, M., Wahlroos, T., & Susi, P. (2004). Role of viral movement and coat proteins and RNA in phloem-dependent movement and phloem unloading of tobamoviruses. Phytopathology, 152, 622–629.

    CAS  Article  Google Scholar 

  35. Sedlak, J., Paprstein, F., & Talacko, L. (2011). Elimination of apple stem pitting virus from pear cultivars by in vitro chemotherapy. Acta Horticulturea, 923, 111–115.

    CAS  Article  Google Scholar 

  36. Scheler, C., Durner, J., & Astier, J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Current Opinion in Plant Biology, 16, 534–539. https://doi.org/. https://doi.org/10.1016/j.pbi.2013.06.020.

    CAS  Article  PubMed  Google Scholar 

  37. Schlicht, M., & Kombrink, E. (2013). The role of nitric oxide in the interaction of Arabidopsis thaliana with the biotrophic fungi, Golovinomyces orontii and Erysiphe pisi. Frontiers in Plant Science, 4, 351. https://doi.org/10.3389/fpls.2013.00351.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song, Y., Hong, N., Wang, L., Hu, H., Tian, R., Xu, W., Ding, F., & Wang, G. (2011). Molecularand serological diversity in apple chlorotic leaf spot virus from sand pear (Pyruspyrifolia) in China. Eur. J. Plant Pathology, 130, 183–196.

    CAS  Article  Google Scholar 

  39. Song, F. M., & Goodman, R. M. (2001). Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Molecular Plant-Microbe Interactions, 14, 1458–1462. https://doi.org/10.1094/MPMI.2001.14.12.1458.

    CAS  Article  PubMed  Google Scholar 

  40. Sun, Q., Sun, H., & Bell, R. L. (2009). Effect of polyvinyl alcohol on in vitro rooting capacity of shoots in pear clones (Pyrus communis L.) of different ploidy. Plant Cell Tissue Organ Culture, 99, 299–304.

    CAS  Article  Google Scholar 

  41. Tan, R. R., Wang, L. P., Hong, N., & Wang, G. P. (2010). Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tissue Organ Culture, 101, 229–235.

    Article  Google Scholar 

  42. Tatineni, S., Afunian, M. R., Hilf, M. E., Gowda, S., Dawson, W. O., & Garnsey, S. M. (2009). Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees: Complete genome sequence and development of biologically active in vitro transcripts. Am. Phytopathol. Soc., 99, 423–431.

    CAS  Article  Google Scholar 

  43. Wach, M. J., Kers, J. A., Krasnoff, S. B., Loria, R., & Gibson, D. M. (2005). Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin a, a nitrated phytotoxin produced by Streptomyces spp. Nitric Oxide, 12, 46–53. https://doi.org/10.1016/j.niox.2004.11.004.

    CAS  Article  PubMed  Google Scholar 

  44. Wang, Q. C., & Valkonen, J. P. T. (2008). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods, 154, 135–145.

    CAS  Article  Google Scholar 

  45. Wang, Q. C., Cuellar, W. J., Rajamäki, M., Hirata, Y., & Valkonen, J. P. T. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: Relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 8, 1–14.

    CAS  Google Scholar 

  46. Wang, L. P., Wang, G. P., Hong, N., Tang, R. R., & Deng, X. Y. (2006). Effect of thermotherapy on elimination of apple stem grooving virus and apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. Hortscience, 41, 729–732.

    Article  Google Scholar 

  47. Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., Khan, M. A., Tao, S., Korban, S. S., Wang, H., & Chen, N. J. (2013). The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 23(2), 396–408.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nooshin Kazemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 253 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazemi, N., Zaare Nahandi, F., Habashi, A.A. et al. Comparing the efficiency of conventional and novel methods of virus elimination using molecular techniques. Eur J Plant Pathol (2020). https://doi.org/10.1007/s10658-020-02048-z

Download citation

Keywords

  • Pear
  • Apple chlorotic leaf spot virus
  • Apple stem pitting virus
  • Apple stem grooving virus
  • Sodium nitroprusside
  • Regeneration