Genome-wide association study of grain mold resistance in sorghum association panel as affected by inoculation with Alternaria alternata alone and Alternaria alternata, Fusarium thapsinum, and Curvularia lunata combined

Abstract

A total of 377 lines from Sorghum Association Panel (SAP) grouped into 10 subpopulations based on eight phenotypic traits, including flag leaf width, terminal branch length, flag leaf height, and flowering time and genetic data were evaluated for grain mold resistance by inoculating them with Alternaria alternata alone, a mixture of A. alternata, Fusarium thapsinum, and Curvularia lunata, and untreated water-sprayed control during 2010, 2013–2015 growing seasons at the Texas A&M AgriLife Research Farm, Burleson County, Texas. Each accession was evaluated at least twice. Eleven accessions exhibited grain mold severity ratings of 2 or less, indicating that they were resistant to highly resistant to the disease when challenged with A. alternata alone, 7 lines identified as such when inoculated with a mixture of A. alternata, F. thapsinum, and C. lunata, and 17 resistant lines were identified under the untreated control. Three lines PI533871, PI576130, and PI656036 exhibited resistant to highly resistant response to grain mold across treatments. When the 10 subpopulations were compared for disease response, accessions within subpopulation 4 had the lowest overall grain mold severity ratings, indicating that this subpopulation (zerazera/caudatum racial type) harbors genes that may contribute to grain mold resistance. A genome-wide association study with over 79,000 single-nucleotide polymorphic (SNP) loci from a publicly available genotype by sequencing dataset available for the (SAP) lines was conducted to identify genomic regions associated with grain mold resistance response based on the individual and combined treatments. In most cases, the top-scoring SNPs were mapped to the nearest or a nearby annotated gene with precedence for a role in host defense.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agarwal, P., & Khurana, P. (2018). Characterization of a novel zinc finger transcription factor (TaZnF) from wheat conferring heat stress tolerance in Arabidopsis. Cell Stress & Chaperones, 23, 253–267.

    CAS  Google Scholar 

  2. Ahn, E., Hu, Z., Perumal, R., Prom, L. K., Odvody, G., Upadhyaya, H. D., & Magill, C. (2019). Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. PLoS One, 14, e0216671.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aksu, M., Pleiner, T., Karaca, S., Kappert, C., Dehne, H.-J., Seibel, K., Urlaub, H., Bohnsack, M. T., & Görlich, D. (2018). Xpo7 is a broad-spectrum exportin and a nuclear import receptor. Journal of Cell Biology, 217, 2329–2340.

    CAS  PubMed  Google Scholar 

  4. Alves, M. S., Dadalto, S. P., Gonçalves, A. B., De Souza, G. B., Barros, V. A., & Fietto, L. G. (2013). Plant bZIP transcription factors responsive to pathogens: A review. International Journal of Molecular Sciences, 14, 7815–7828.

    PubMed  PubMed Central  Google Scholar 

  5. Arruda, P., & Neshich, I. P. (2012). Nutritional-rich and stress-tolerant crops by saccharopine pathway manipulation. Food and Energy Security, 1, 141–147. https://doi.org/10.1002/fes3.9.

    Article  Google Scholar 

  6. Audilakshmi, S., Stenhouse, J. W., Reddy, T. P., & Prasad, M. V. R. (1999). Grain mold resistance and associated characters of sorghum genotypes. Euphytica, 10, 91–103.

    Google Scholar 

  7. Bender, R., & Lange, S. (1999). Multiple test procedures other than Bonferroni’s deserve wider use. BMJ, 318, 600–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni method. BMJ, 310, 170–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). Tassel: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.

    CAS  PubMed  Google Scholar 

  10. Bruggeman, Q., Garmier, M., de Bont, L., Soubigou-Taconnat, L., Mazubert, C., Benhamed, M., Raynaud, C., Bergounioux, C., & Delarue, M. (2014). The polyadenylation factor subunit cleavage and polyadenylation specificity FACTOR30: A key factor of programmed cell death and a regulator of immunity in Arabidopsis. Plant Physiology, 165, 732–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Calhim, S., Halme, P., Petersen, J. H., LæssØe, T., Bässler, C., & Heilmann-Clausen, J. (2018). Fungal spore diversity reflects substrate-specific deposition challenges. Scientific Reports, 8, 5356. https://doi.org/10.1038/s41598-018-23292-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Casa, A. M., Pressoir, G., Brown, P. J., Mitchell, S. E., Rooney, W. L., Tuinstra, M. R., Franks, C. D., & Kresovich, S. (2008). Community resources and strategies for association mapping in sorghum. Crop Science, 48, 30–40.

    Google Scholar 

  13. Chaouch, S., Queval, G., Vanderauwera, S., Mhamdi, A., Vandorpe, M., Langlois-Meurinne, M., Van Breusegem, F., Saindrenan, P., & Noctor, G. (2010). Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiology, 153, 1692–1705.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, X., Lin, W.-H., Wang, Y., Luan, S., & Xue, H.-W. (2008). An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in arabidopis by altering cytosolic Ca2+. The Plant Cell, 20, 353–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, N., Huang, Z., Lu, C., Shen, Y., Luo, X., Ke, C., & You, W. (2019). Different transcriptomic responses to thermal stress in heat-tolerant and heat-sensitive pacific abalones indicated by cardiac performance. Frontiers in Physiology, 9, 1895–1895.

    PubMed  PubMed Central  Google Scholar 

  16. Cheng, Q., Li, N., Dong, L., Zhang, D., Fan, S., Jiang, L., Wang, X., Xu, P., & Zhang, S. (2015). Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Frontiers in Plant Science, 6, 1024–1024.

    PubMed  PubMed Central  Google Scholar 

  17. Cuevas, H. E., Prom, L. K., Isakeit, T., & Radwan, G. (2016). Assessment of sorghum germplasm from Burkina Faso and South Africa to identify new sources of resistance to grain mold and anthracnose. Crop Protection, 79, 43–50.

    Google Scholar 

  18. Cuevas, H. E., Prom, L. K., & Rosa, G. M. (2018). Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes. PLoS One, 13(2), e0191877.

    PubMed  PubMed Central  Google Scholar 

  19. Dick, R., Rattei, T., Haslbeck, M., Schwab, W., Gierl, A., & Frey, M. (2012). Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: Independent recruitment of stabilization and activation functions. The Plant Cell, 24, 915–928.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Esele, J. P., Frederiksen, R. A., & Miller, F. R. (1995). Importance of plant colour and modifier genes in grain mould resistance in sorghum. East African Agricultural and Forestry Journal, 61, 31–37.

    Google Scholar 

  21. Expert, D. (1999). Withholding and exchanging iron: Interactions between Erwinia spp. and their plant hosts. Annual Review of Phytopathology, 37, 307–334.

    CAS  PubMed  Google Scholar 

  22. Forbes, G. A., Bandyopadhyay, R., & Garcia, G. (1992). A review of sorghum grain mold. In W. A. J. de Milliano, R. A. Frederiksen, & G. D. Bengston (Eds.), Sorghum and millets diseases: A second world review (pp. 253–264). India: ICRISAT, Patancheru-502 324 https://www.researchgate.net/publication/262790121_A_review_of_sorghum_grain_mold.

    Google Scholar 

  23. Frederiksen, R.A., & Odvody, G.N. (2000). Compendium of sorghum diseases. (Ed.), The American phytopathological society (pp. 78). St. Paul. https://my.apsnet.org/ItemDetail?iProductCode=42406

  24. Funnell-Harris, D. L., Prom, L. K., Sattler, S. E., & Pedersen, J. F. (2013). Response of near-isogenic sorghum lines, differing at the P locus for plant colour, to grain mould and head smut fungi. Annals of Applied Biology, 163, 91–101.

    Google Scholar 

  25. Gonzalez, R., Phillips, R., Saloni, D., Jameel, H., Abt, R., Pirraglia, A., & Wright, J. (2011). Biomass to energy in the Southern United States: Supply chain and delivered cost. BioResources, 6, 2954–2976 https://pdfs.semanticscholar.org/1842/f5b6d2204c785090e995e4df6fa5fd4879ad.pdf.

    CAS  Google Scholar 

  26. Hassan, M., Zainal, Z., & Ismail, I. (2015). Plant kelch containing F-box proteins: Structure, evolution and functions. RSC Advances, 5, 42808–42814.

    Google Scholar 

  27. Hood, M. I., & Skaar, E. P. (2012). Nutritional immunity: Transition metals at the pathogen-host interface. Nature Reviews Microbiology, 10, 525–537.

    CAS  PubMed  Google Scholar 

  28. Hung, C.-Y., Aspesi, P., Jr., Hunter, M. R., Lomax, A. W., & Perera, I. Y. (2014). Phosphoinositide-signaling is one component of a robust plant defense response. Frontiers in Plant Science, 5, 267.

    PubMed  PubMed Central  Google Scholar 

  29. Isakeit, T., Collins, S. D., Rooney, W. L., & Prom, L. K. (2008a). Reaction of sorghum hybrids to anthracnose and grain weathering in Burleson County, Texas, 2007. Plant Disease Management Reports, 2, FC003 https://www.plantmanagementnetwork.org › pub › trial › pdmr.

    Google Scholar 

  30. Isakeit, T., Prom, L. K., Wheeler, M., Puckhaber, L. S., & Liu, J. (2008b). Mycotoxigenic potential of ten fusarium species grown on sorghum and in vitro. Plant Pathology Journal, 7, 183–186.

    Google Scholar 

  31. Karim, S., Holmström, K.-O., Mandal, A., Dahl, P., Hohmann, S., Brader, G., Palva, E. T., & Pirhonen, M. (2007). AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta, 225, 1431–1445.

    CAS  PubMed  Google Scholar 

  32. Katilé, S. O., Permual, R., Rooney, W. L., Prom, L. K., & Magill, C. W. (2010). Expression of pathogenesis-related protein PR-10 in sorghum floral tissues in response to inoculation with Fusarium thapsinum and Curvularia lunata. Molecular Plant Pathology, 11, 93–103.

    PubMed  Google Scholar 

  33. Kawamoto, M., Horibe, T., Kohno, M., & Kawakami, K. (2011). A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells. BMC Cancer, 11, 359.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, H. S., & Delaney, T. P. (2002). Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. The Plant Cell, 14, 1469–1482.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kubo, Y. (2013). Function of peroxisomes in plant-pathogen interactions. In L. A. del Río (Ed.), Peroxisomes and their key role in cellular signaling and metabolism (pp. 329–345). Dordrecht: Springer Netherlands.

    Google Scholar 

  36. Kumar, A. A., Reddy, B. V. S., Thakur, R. P., & Ramaiah, B. (2008). Improved sorghum hybrids with grain mold resistance. Journal of SAT Agricultural Research, 6, 1–4 https://www.researchgate.net/publication/26630220_Improved_sorghum_hybrids_with_grain_mold_resistance.

    Google Scholar 

  37. Kumar, A. A., Reddy, B. V. S., Sharma, H. C., Hash, C. T., Rao, P. S., Ramaiah, B., & Reddy, P. S. (2011). Recent advances in sorghum genetic enhancement research at ICRISAT. American Journal of Plant Sciences, 2, 589–600.

    Google Scholar 

  38. Kumar, D., Rampuria, S., Singh, N. K., & Kirti, P. B. (2016). A novel zinc-binding alcohol dehydrogenase 2 from Arachis diogoi, expressed in resistance responses against late leaf spot pathogen, induces cell death when transexpressed in tobacco. FEBS Open Bio, 6, 200–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Leslie, J. F., Zeller, K. A., Lamprecht, S. C., Rheeder, J. P., & Marasas, W. F. (2005). Toxicity, pathogenicity, and genetic differentiation of five species of fusarium from sorghum and millet. Phytopatholoy, 95, 275–283. https://doi.org/10.1094/PHYTO-95-0275.

    CAS  Article  Google Scholar 

  40. Li, Y., Qian, Q., Zhou, Y., Yan, M., Sun, L., Zhang, M., Fu, Z., Wang, Y., Han, B., Pang, X., Chen, M., & Li, J. (2003). BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. The Plant Cell, 15, 2020–2031.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Little, C. R., Perumal, R., Tesso, T., Prom, L. K., & Magill, C. W. (2012). Sorghum pathology and biotechnology: A fungal disease perspective: Part I. Grain mold, head smut, and ergot. European Journal of Plant Science and Biotechnology, 6, 10–30 http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/EJPSB_6(SI1)/EJPSB_6(SI1)10-30o.pdf.

    Google Scholar 

  42. Liu, J.-J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.

    CAS  Google Scholar 

  43. Ma, W., Smigel, A., Verma, R., & Berkowitz, G. A. (2009). Cyclic nucleotide gated channels and related signaling components in plant innate immunity. Plant Signaling & Behavior, 4, 277–282.

    CAS  Google Scholar 

  44. Mahmoud, A. F., Abou-Elwafa, S. F., & Shehzad, T. (2018). Identification of charcoal rot resistance QTLs in sorghum using association and in silico analyses. Journal of Applied Genetics, 59, 243–251.

    PubMed  Google Scholar 

  45. March, E., & Farrona, S. (2018). Plant deubiquitinases and their role in the control of gene expression through modification of histones. Frontiers in Plant Science, 8, 2274–2274.

    PubMed  PubMed Central  Google Scholar 

  46. McCormick, R. F., Truong, S. K., Sreedasyam, A., Jenkins, J., Shu, S., Sims, D., Kennedy, M., Amirebrahimi, M., Weers, B. D., McKinley, B., Mattison, A., Morishige, D. T., Grimwood, J., Schmutz, J., & Mullet, J. E. (2018). The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. The Plant Journal, 93, 338–354.

    CAS  PubMed  Google Scholar 

  47. Melake-Berhan, A., Butler, L., Ejeta, G., & Menkir, A. (1996). Grain mold resistance and polyphenol accumulation in sorghum. Journal of Agricultural and Food Chemistry, 44, 2428–2434.

    CAS  Google Scholar 

  48. Miyamoto, T., Uemura, T., Nemoto, K., Daito, M., Nozawa, A., Sawasaki, T., & Arimura, G.-I. (2019). Tyrosine kinase-dependent defense responses against herbivory in Arabidopsis. Frontiers in Plant Science, 10, 776. https://doi.org/10.3389/fpls.2019.00776 eCollection 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00776/full?report=reader.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Moeder, W., Urquhart, W., Ung, H., & Yoshioka, K. (2011). The role of cyclic nucleotide-gated ion channels in plant immunity. Molecular Plant, 4, 442–452.

    CAS  PubMed  Google Scholar 

  50. Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya, H. D., Riera-Lizarazu, O., Brown, P. J., Acharya, C. B., Mitchell, S. E., Harriman, J., Glaubitz, J. C., Buckler, E. S., & Kresovich, S. (2013). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences, 110, 453–458.

    CAS  Google Scholar 

  51. Mpofu, L. T., & McLaren, N. W. (2014). Ergosterol concentration and variability in genotype-by-pathogen interaction for grain mold resistance in sorghum. Planta, 240, 239–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Naeem Ul Hassan, M., Zainal, Z., & Ismail, I. (2015). Plant kelch containing F-box proteins: Structure, evolution and functions. RSC Advances, 5, 42808–42814 https://pubs.rsc.org/-/content/articlepdf/2015/ra/c5ra01875g.

    CAS  Google Scholar 

  53. Naqvi, S. D. Y., Shiden, T., Merhawi, W., & Mehret, S. (2013). Identification of seed borne fungi on farmer saved sorghum [Sorghum bicolor (L.)], pearl millet [Pennisetum glaucum (L.)] and groundnut [Arachis hypogaea (L.)] seeds. Agricultural Science Research Journal, 3, 107–114 https://pdfs.semanticscholar.org/f4c9/f4ad9e413b8e5b7962072fa6c2a2bf0e4286.pdf.

    Google Scholar 

  54. Návarová, H., Bernsdorff, F., Döring, A.-C., & Zeier, J. (2012). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell, 24, 5123–5141.

    PubMed  PubMed Central  Google Scholar 

  55. Navi, S. S., Bandyopadhyay, R., Reddy, R. K., Thakur, R. P., & Yang, X. B. (2005). Effects of wetness duration and grain development stages on sorghum grain mold infection. Plant Diseases, 89, 872–878.

    CAS  Google Scholar 

  56. Newstead, S. (2017). Recent advances in understanding proton coupled peptide transport via the POT family. Current Opinion in Structural Biology, 45, 17–24.

    CAS  PubMed  Google Scholar 

  57. Nida, H., Girma, G., Mekonen, M., Lee, S., Seyoum, A., Dessalegn, K., Tadesse, T., Ayana, G., Senbetay, T., Tesso, T., Ejeta, G., & Mengiste, T. (2019). Identification of sorghum grain mold resistance loci through genome wide association mapping. Journal of Cereal Science, 85, 295–304.

    CAS  Google Scholar 

  58. Oliveira, R. C., Davenport, K. W., Hovde, B., Silva, D., Chain, P. S. G., Correa, B., & Rodrigues, D. F. (2017). Draft genome sequence of sorghum grain mold fungus Epicoccum sorghinum producer of tenuazonic acid. Genome Announcements, 5, e01495–16. https://doi.org/10.1128/genomeA.01495-16.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pandey, A., & Sonti, R. V. (2010). Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice. Journal of Bacteriology, 192, 3187–3203.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Peris-Peris, C., Serra-Cardona, A., Sánchez-Sanuy, F., Campo, S., Ariño, J., & San Segundo, B. (2017). Two NRAMP6 isoforms function as iron and manganese transporters and contribute to disease resistance in rice. Molecular Plant-Microbe Interactions, 30, 385–398.

    CAS  PubMed  Google Scholar 

  61. Prom, L. K. (2004). The effects of Fusarium thapsinum, Curvularia lunata, and their combination on sorghum germination and seed mycoflora. Journal New Seeds, 6, 39–49.

    Google Scholar 

  62. Prom, L. K., & Erpelding, J. E. (2009). New sources of grain mold resistance among sorghum accessions from Sudan. Tropical and Subtropical Agroecosystems, 10, 457–463 https://www.redalyc.org/pdf/939/93912996013.pdf.

    Google Scholar 

  63. Prom, L. K., Waniska, R. D., Kollo, A. I., & Rooney, W. L. (2003). Response of eight sorghum cultivars inoculated with Fusarium thapsinum, Curvularia lunata and a mixture of the two fungi. Crop Protection, 22, 623–628.

    Google Scholar 

  64. Prom, L. K., Isakeit, T., Perumal, R., Erpelding, J. E., Rooney, W., & Magill, C. W. (2011). Evaluation of the Ugandan sorghum accessions for grain mold and anthracnose resistance. Crop Protection, 30, 566–571.

    Google Scholar 

  65. Prom, L. K., Perumal, R., Cissé, N., & Little, C. R. (2014). Evaluation of selected sorghum lines and hybrids for resistance against grain mold and long smut fungi in Senegal, West Africa. Plant Health Progress, 15, 74–77. https://doi.org/10.1094/PHP-RS-13-0128.

    Article  Google Scholar 

  66. Prom, L. K., Perumal, R., Zheyu, J., Radwan, G., Isakeit, T., & Magill, C. (2015). Mycoflora analysis of hybrid sorghum grain collected from different locations in South Texas. American Journal of Experimental Agriculture, 6(1), 1–6.

    Google Scholar 

  67. Prom, L. K., Radwan, G., Perumal, R., Cuevas, H. E., Katile, S., Isakeit, T., & Magill, C. (2017). Grain biodeterioration of sorghum converted lines inoculated with a mixture of Fusarium thapsinum and Curvularia lunata. Plant Pathology Journal, 16, 19–24.

    Google Scholar 

  68. Prom, L. K., Ahn, E., Isakeit, T., & Magill, C. (2019). GWAS analysis of sorghum association panel lines identifies SNPs associated with disease response to Texas isolates of Colletotrichum sublineola. Theoretical and Applied Genetics, 132, 1389–1396.

    CAS  PubMed  Google Scholar 

  69. Rao, V. T., Reddy, P. S., Thakur, R. P., & Reddy, B. V. S. (2013). Physical kernel properties associated with grain mold resistance in sorghum [Sorghum bicolor (L.) Moench]. International Journal of Plant Breeding and Genetics, 7, 176–181. https://scialert.net/fulltext/?doi=ijpbg.2013.176.181.

    Google Scholar 

  70. Saand, M. A., Xu, Y.-P., Li, W., Wang, J.-P., & Cai, X.-Z. (2015). Cyclic nucleotide gated channel gene family in tomato: Genome-wide identification and functional analyses in disease resistance. Frontiers in Plant Science, 6, 303. https://doi.org/10.3389/fpls.2015.00303.

  71. Sashidha, R. B., Ramakrishna, Y., & Bhat, R. V. (1992). Moulds and mycotoxins in sorghum stored in traditional containers in India. The Journal of Stored Products, 28, 257–260.

    Google Scholar 

  72. Seidl, M. F., Van den Ackerveken, G., Govers, F., & Snel, B. (2011). A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiology, 155, 628–644.

    CAS  PubMed  Google Scholar 

  73. Sharma, M., & Pandey, G. K. (2016). Expansion and function of repeat domain proteins during stress and development in plants. Frontiers in Plant Science, 6, 1218–1218.

    PubMed  PubMed Central  Google Scholar 

  74. Singh, S. D., & Bandyopadhyay, R. (2000). Grain mold. In R. A. Frederiksen & G. N. Odvody (Eds.), Compendium of sorghum diseases (pp. 38–40). St. Paul: The American Phytopathological Society https://my.apsnet.org/ItemDetail?iProductCode=42406.

    Google Scholar 

  75. Su, T., Li, W., Wang, P., & Ma, C. (2019). Dynamics of peroxisome homeostasis and its role in stress response and signaling in plants. Frontiers in Plant Science, 10, 705–705.

    PubMed  PubMed Central  Google Scholar 

  76. Tang, D., Ade, J., Frye, C. A., & Innes, R. W. (2005). Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. The Plant Journal: Cell and Molecular Biology, 44, 245–257.

    CAS  Google Scholar 

  77. Thakur, R. P., Rao, V. P., Reddy, B. V. S., & Reddy, S. P. (2007). Grain mold. In R. P. Thakur, B. V. S. Reddy, & K. Mathur (Eds.), Screening techniques for sorghum diseases (pp. 5–14). India: ICRISAT, Patancheru-502 324 Bull. 76. http://oar.icrisat.org/4062/.

    Google Scholar 

  78. Thurow, C., Schiermeyer, A., Krawczyk, S., Butterbrodt, T., Nickolov, K., & Gatz, C. (2005). Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. The Plant Journal, 44, 100–113.

    CAS  PubMed  Google Scholar 

  79. Turgay, E. B., & Ünal, F. (2009). Detection of seed borne mycoflora of sorghum in Turkey. The Journal of Turkish Phytopathology, 38, 9–20 http://www.fitopatoloji.org.tr/arsiv/2009/2009-1-3-9-20.pdf.

    Google Scholar 

  80. Ul Haq, S., Khan, A., Ali, M., Khattak, A. M., Gai, W.-X., Zhang, H.-X., Wei, A.-M., & Gong, Z.-H. (2019). Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20, 5321.

    CAS  PubMed Central  Google Scholar 

  81. Umezawa, T. (2010). The cinnamate/monolignol pathway. Phytochemistry Reviews, 9, 1–17.

    CAS  Google Scholar 

  82. USDA, Foreign Agricultural Service. 2020. World agricultural production. Circular series WAP 1–20, January 2020. https://www.fas.usda.gov/data/world-agricultural-production

  83. Von Rad, U., Hüttl, R., Lottspeich, F., Gierl, A., & Frey, M. (2001). Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. The Plant Journal, 28, 633–642.

    Google Scholar 

  84. Williams, R. J., & Rao, K. N. (1981). A review of sorghum grain moulds. Tropical Pest Management, 27, 200–211.

    Google Scholar 

  85. Williams, S. P., Gillaspy, G. E., & Perera, I. Y. (2015). Biosynthesis and possible functions of inositol pyrophosphates in plants. Frontiers in Plant Science, 6, 67.

    PubMed  PubMed Central  Google Scholar 

  86. Zhang, H., Teng, W., Liang, J., Liu, X., Zhang, H., Zhang, Z., & Zheng, X. (2015). MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpinXoo. Journal of Experimental Botany, 67, 131–141.

    PubMed  Google Scholar 

  87. Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., Zhu, X., Chen, Z., Yuan, C., Zhao, W., Wang, J., Li, W., He, M., Ma, B., Wang, J., Qin, P., Chen, W., Wang, Y., Liu, J., Qian, Y., Wang, W., Wu, X., Li, P., Zhu, L., Li, S., Ronald, P. C., & Chen, X. (2018). Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences, 115, 3174–3179.

    CAS  Google Scholar 

Download references

Acknowledgements

CRIS project from the United States Department of Agriculture. Project number 3091-22000-034-00D.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louis K. Prom.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Disclaimer: Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendations or endorsement by the U.S. Department of Agriculture

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prom, L.K., Cuevas, H.E., Ahn, E. et al. Genome-wide association study of grain mold resistance in sorghum association panel as affected by inoculation with Alternaria alternata alone and Alternaria alternata, Fusarium thapsinum, and Curvularia lunata combined. Eur J Plant Pathol (2020). https://doi.org/10.1007/s10658-020-02036-3

Download citation

Keywords

  • Sorghum grain mold
  • Alternaria alternata
  • Fusarium thapsinum
  • Curvularia lunata
  • GWAS
  • QTL