Phylogeny and pathogenicity of soilborne fungi associated with wilt disease complex of tomatillo (Physalis ixocarpa) in northern Sinaloa, Mexico

Abstract

Wilt disease complex is one of the most important diseases of tomatillo (Physalis ixocarpa) in the production areas of Mexico. Disease symptoms include wilting, poor growth, discoloration of vascular tissues, root rot, and death of plants. The aims of this study were to identify the fungi associated with wilt disease complex of tomatillo by the combination of phylogenetic analyses and morphological characterization, as well as to determine their pathogenicity and virulence on tomatillo seedlings. A total of 88 fungal isolates were obtained from symptomatic plants from 19 tomatillo fields distributed in northern Sinaloa, Mexico. Subsequently, a subset of 37 isolates representing the range of geographic origin was selected for further morphological and molecular characterization as well as pathogenicity tests. Phylogenetic analyses using Maximum Likelihood were used to identify 15 isolates of Rhizoctonia (ITS sequence data), 14 isolates of Fusarium (EF-1α sequence data), five isolates of Macrophomina (ITS, EF-1α, BT, and ACT sequence dataset) and three isolates of Neocosmospora (EF-1α sequence data) to species level. Pathogenicity tests were performed on tomatillo seedlings (cv. Gran Esmeralda) under greenhouse conditions. Phylogenetic analyses of 37 fungal isolates allowed the identification of Rhizoctonia solani AG 4-HGI (40.5%), Fusarium oxysporum (29.8%), Macrophomina phaseolina (13.5%), F. nygamai (8.1%) and Neocosmospora falciformis (8.1%). All fungal species were found to be pathogenic on tomatillo seedlings but a significant difference in disease severity was observed. To our knowledge, F. nygamai, M. phaseolina and N. falciformis were recorded for the first time infecting tomatillo in Mexico and worldwide.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmad, S., Iqbal, S. H., & Khalid, A. N. (1997). Fungi of Pakistan. Pakistan: Sultan Ahmad Mycological Society of Pakistan.

    Google Scholar 

  2. Alves, A., Crous, P. W., Correia, A., & Phillips, A. J. L. (2008). Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity, 28, 1–13.

    Google Scholar 

  3. Apodaca-Sánchez, M. A., Barreras-Soto, M. A., Cortez-Mondaca, E., & Quintero-Benítez, J. A. (2008). Enfermedades del Tomate de Cáscara en Sinaloa. México: INIFAP: INIFAP–CIRNO. Campo Experimental Valle del Fuerte. Folleto Técnico No. 31.

  4. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.

    CAS  Google Scholar 

  5. Correll, J. C., Puhalla, J. E., & Schneider, R. W. (1986). Identification of Fusarium oxysporum f. sp. apii on the basis of colony size, virulence, and vegetative compatibility. Phytopathology, 76, 396–400.

    Google Scholar 

  6. Datnoff, L. E., & Sinclair, J. B. (1988). The interaction of Fusarium oxysporum and Rhizoctonia solani in causing root rot of soybeans. Phytopathology, 78, 771–777.

    Google Scholar 

  7. De la Torre-Almaráz, R., Salazar-Segura, M., & Valverde, R. (2003). Etiology of husk tomato (Physalis ixocarpa B.) yellow mottle in Mexico. Agrociencia, 37, 277–289.

    Google Scholar 

  8. Elias-Medina, R., Ponce-González, F., & Romero-Cova, S. (1997). Grupos anastomósicos de Rhizoctonia solani Kühn que atacan papa, frijol y haba en cuatro municipios del Estado de México y chile en San Luis Potosí. Revista Mexicana de Micología, 13, 33–40.

    Google Scholar 

  9. Enciso-Rodríguez, F. E., González, C., Rodríguez, E. A., López, C. E., Landsman, D., Barrero, L. S., & Mariño-Ramírez, L. (2013). Identification of immunity related genes to study the Physalis peruviana–Fusarium oxysporum pathosystem. PLoS One,8(7), e68500.

    PubMed  PubMed Central  Google Scholar 

  10. Farr, D. F., & Rossman, A. Y. (2019). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved June 17, 2019, from https://nt.ars-grin.gov/fungaldatabases/.

  11. Félix-Gastélum, R., Ávila-Díaz, J. A., Valenzuela-Cota, B. O., Trigueros-Salmeron, J. A., & Longoria-Espinoza, R. M. (2007). Identificación y control químico de los agentes causales de la mancha foliar y la cenicilla del tomatillo (Physalis ixocarpa Brot.) en el Norte de Sinaloa, México. Revista Mexicana de Fitopatología, 25, 1–10.

    Google Scholar 

  12. Fuhlbohm, M. F., Ryley, M. J., & Aitken, E. A. B. (2012). New weed hosts of Macrophomina phaseolina in Australia. Australasian Plant Disease Notes, 7, 193–195.

    Google Scholar 

  13. Gámez-Jiménez, C., Romero-Romero, J. L., Santos-Cervantes, M. E., Leyva-López, N. E., & Méndez-Lozano, J. (2009). Tomatillo (Physalis ixocarpa) as a natural new host for Tomato yellow leaf curl virus in Sinaloa, Mexico. Plant Disease, 93(5), 545.

    PubMed  Google Scholar 

  14. Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gómez-Camacho, R., Rodríguez-Mendoza, M. N., Cárdenas-Soriano, E., Sandoval-Villa, M., & Colinas de León, M. T. (2006). Fertilización foliar con silicio como alternativa contra la marchitez causada por Fusarium oxysporum (Sheld) en tomate de cáscara. Revista Chapingo Serie Horticultura, 12(1), 69–75.

  16. González-Pacheco, B. E., & Silva-Rosales, L. (2013). First report of Impatiens necrotic spot virus in Mexico in tomatillo and pepper plants. Plant Disease, 97(8), 1124.

    PubMed  Google Scholar 

  17. Güney, I. G., & Güldür, M. E. (2018). Inoculation Techniques for assessing pathogenicity of Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum and Fusarium solani on pepper seedlings. Turkey Journal of Agricultural Research, 5(1), 1–8.

    Google Scholar 

  18. Gupta, A. K., Choudhary, R., Bashyal, B. M., Rawat, K., Singh, D., & Solanki, I. S. (2019). First report of root and stem rot disease on papaya caused by Fusarium falciforme in India. Plant Disease. https://doi.org/10.1094/PDIS-11-18-2118-PDN.

    Article  PubMed  Google Scholar 

  19. Koike, S. T., Gladders, P., & Paulus, A. O. (2007). Vegetable Diseases. A colour handbook (448 p). London: Manson Publishing.

    Google Scholar 

  20. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual (388 p). Iowa: Blackwell Publishing.

    Google Scholar 

  22. Leyva-Madrigal, K. Y., Larralde-Corona, C. P., Apodaca-Sánchez, M. A., Quiroz-Figueroa, F. R., Mexia-Bolaños, P. A., Portillo-Valenzuela, S., Ordaz-Ochoa, J., & Maldonado-Mendoza, I. E. (2015). Fusarium species from the Fusarium fujikuroi species complex involved in mixed infections of maize in Northern Sinaloa, Mexico. Journal of Phytopathology, 163, 486–497.

    CAS  Google Scholar 

  23. Machado, A. R., Pinho, D. B., Soares, D. J., Gomes, A. A. M., & Pereira, O. L. (2019). Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. European Journal of Plant Pathology, 153(1), 89–100.

    Google Scholar 

  24. Martínez-Fernández, E., Martínez-Jaimes, P., Guillén-Sánchez, D., Peña-Chora, G., & Hernández-Hernández, V. M. (2015). Diversidad de Fusarium en las raíces de caña de azúcar (Saccharum officinarum) en el estado de Morelos, México. Revista Mexicana de Micología, 42, 33–43.

    Google Scholar 

  25. Mauricio-Castillo, J. A., Reveles-Torres, L. R., Salas-Luévano, M. A., Franco-Bañuelos, A., Salas-Marina, M. A., & Salas-Muñoz, S. (2018). First report of ‘Candidatus Phytoplasma trifolii’-related strain associated with a new disease in tomatillo plants in Zacatecas, Mexico. Plant Disease, 102(8), 1653.

    Google Scholar 

  26. Mayek-Pérez, N., López-Castañeda, C., González-Chavira, M., García-Espinosa, R., Acosta-Gallegos, J. A., Martínez de la Vega, O., & Simpson, J. (2001). Variability of Mexican isolates of Macrophomina phaseolina on bases of pathogenesis and AFLP genotype. Physiological and Molecular Plant Pathology,59, 257–264.

    Google Scholar 

  27. Méndez-Lozano, J., Rivera-Bustamante, R. F., Fauquet, C. M., & De la Torre-Almaraz, R. (2001). Pepper huasteco virus and Pepper golden mosaic virus are Geminiviruses affecting tomatillo (Physalis ixocarpa) crops in Mexico. Plant Disease, 85(12), 1291.

    PubMed  Google Scholar 

  28. Meza-Moller, A., Esqueda, M., Gardea, A. A., Tiznado-Hernandez, M., & Virgen-Calleros, G. (2007). Variabilidad morfológica, patogénica y susceptibilidad a fungicidas de Rhizoctonia solani aislado de rizósfera de Vitis vinifera var. Perlette seedless. Revista Mexicana de Micología, 24, 1–7.

    Google Scholar 

  29. Meza-Moller, A., Esqueda, M., Sanchez-Teyer, F., Vargas-Rosales, G., Gardea, A. A., & Tiznado-Hernandez, M. (2011). Genetic variability in Rhizoctonia solani isolated from Vitis vinifera based on amplified fragment length polymorphism. American Journal of Agricultural and Biological Sciences, 6(3), 317–323.

    Google Scholar 

  30. Montero-Tavera, V., Guerrero-Aguilar, B. Z., Anaya-López, J. L., Martínez-Martínez, T. O., Guevara-Olvera, L., & González-Chavira, M. M. (2013). Genetic diversity of Rhizoctonia solani isolates (Kuhn) from pepper in Mexico. Revista Mexicana de Ciencias Agrícolas, 4(7), 1043–1054.

    Google Scholar 

  31. Muñoz-Cabañas, R. M., Hernández-Delgado, S., & Mayek-Pérez, N. (2005). Análisis patogénico y genético de Macrophomina phaseolina (Tassi) Goid. en diferentes hospedantes. Revista Mexicana de Fitopatología, 23, 11–18.

    Google Scholar 

  32. Navarrete-Maya, R., Trejo-Albarrán, E., Navarrete-Maya, J., Prudencio-Sains, J. M., & Acosta Gallegos, J. A. (2009). Reacción de genotipos de frijol a Fusarium spp. y Rhizoctonia solani bajo condiciones de campo e invernadero. Agricultura Técnica en México,35, 455–466.

    Google Scholar 

  33. Osorio-Guarín, J. A., Enciso-Rodríguez, F. E., González, C., Fernández-Pozo, N., Mueller, L. A., & Barrero, L. S. (2016). Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC genomics, 17, 248.

    PubMed  PubMed Central  Google Scholar 

  34. Rentería-Martínez, M. E., Guerra-Camacho, M. A., Ochoa-Meza, A., Moreno-Salazar, S. F., Varela-Romero, A., Gutiérrez-Millán, L. E., & Meza-Moller, A. C. (2018). Multilocus phylogenetic analysis of fungal complex associated with root rot watermelon in Sonora, Mexico. Revista Mexicana de Fitopatología, 36(2), 233–255.

    Google Scholar 

  35. Sandoval-Denis, M., & Crous, P. W. (2018). Removing chaos from confusion: assigning names to common human and animal pathogens in Neocosmospora. Persoonia, 41, 109–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Santos-Cervantes, M. E., Chávez-Medina, J. A., Fierro-Coronado, J. A., Ruelas-Ayala, R. D., Barreras-Soto, M. A., Méndez-Lozano, J., & Leyva-López, N. E. (2006). First report of a Candidatus Phytoplasma asteris infecting tomatillo (Physalis ixocarpa) in Sinaloa, México. New Disease Reports, 14, 29.

    Google Scholar 

  37. Shivas, R. G. (1989). Fungal and bacterial diseases of plants in Western Australia. Journal of the Royal Society of Western Australia, 72, 1–62.

    Google Scholar 

  38. SIAP. (2018). Atlas Agroalimentario 2012–2018. Servicio de Información Agroalimentaria y Pesquera. Mexico: Ciudad de México.

    Google Scholar 

  39. Sneh, B., Burpee, L., & Ogoshi, A. (1991). Identification of Rhizoctonia species. Minnesota: American Phytopathological Society.

    Google Scholar 

  40. Soto, G., Peña, A., Santiaguillo, J. F., Rodríguez, J. E., & Palacios, A. (1998). Resistencia a Fusarium sp. de 95 colectas de tomate de cáscara (Physalis spp.). Revista Chapingo Serie Horticultura, 4(1), 51–55.

    Google Scholar 

  41. Sousa, E. S., Melo, M. P., Mota, J. M., Sousa, E. M. J., Beserra, J. E. A. Jr., & Matos, K. S. (2017). First report of Fusarium falciforme (FSSC 3 + 4) causing root rot in lima bean (Phaseolus lunatus L.) in Brazil. Plant Disease, 101(11), 1954.

  42. Staden, R., Beal, K. F., & Bonfield, J. K. (1998). The Staden Package, 1998. In S. Misener & S. A. Krawetz (Eds.), Bioinformatics Methods and Protocols (pp. 115–130). New York: The Humana Press.

    Google Scholar 

  43. Thompson, J. D., Gibson, T., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876–4882.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tirado-Ramírez, M. A., López-Orona, C. A., Velázquez-Alcaraz, TdeJ., Díaz-Valdés, T., Velarde-Félix, S., Martínez-Campos, A. R., & Retes-Manjarrez, J. E. (2018). First report of onion basal rot caused by Fusarium falciforme in Mexico. Plant Disease, 102(12), 2646.

    Google Scholar 

  45. Urrea, R., Cabezas, L., Sierra, R., Cárdenas, M., Restrepo, S., & Jiménez, P. (2011). Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. Journal of Applied Microbiology, 111, 707–716.

    CAS  PubMed  Google Scholar 

  46. Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics,27, 171–180.

    Google Scholar 

  47. Vega-Gutiérrez, T. A., López-Orona, C. A., López-Urquídez, G. A., Velarde-Félix, S., Amarillas-Bueno, L. A., Martínez-Campos, A. R., & Allende-Molar, R. (2019a). Foot rot and wilt in tomato caused by Fusarium falciforme (FSSC 3 + 4) in Mexico. Plant Disease, 103(1), 157.

    Google Scholar 

  48. Vega-Gutiérrez, T. A., Tirado-Ramírez, M. A., López-Urquídez, G. A., Angulo-Castro, A., Martínez-Gallardo, J. A., & López-Orona, C. A. (2019b). Fusarium falciforme (FSSC 3 + 4) causing root and stem rot in Papaya (Carica papaya) in Mexico. Plant Disease, 103(10), 2681.

    Google Scholar 

  49. Virgen-Calleros, G., Olalde-Portugal, V., & Carling, D. E. (2000). Anastomosis groups of Rhizoctonia solani on potato in Central Mexico and potential for biological and chemical control. American Journal of Potato Research, 77, 219–224.

    CAS  Google Scholar 

  50. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand & J. J. Sninsky, & White T. J. (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). San Diego: Academic Press.

  51. Young, N. D., & Healy, J. (2003). GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics, 4(1), 6.

    PubMed  PubMed Central  Google Scholar 

  52. Zhao, L., Cai, J., He, W., & Zhang, Y. (2019). Macrophomina vaccinii sp. nov. causing blueberry stem blight in China. Mycokeys, 22, 1–14.

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank the National Council of Science and Technology (CONACYT) of Mexico for his doctoral scholarship. This research was financially supported by the CONACYT, project INFRA–2019–302117.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hugo Beltrán-Peña.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Human and animals rights

No human or animal was involved in this research by the authors.

Informed consent

All authors have reviewed the manuscript and approved its submission to the European Journal of Plant Pathology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayala-Armenta, Q.A., Tovar-Pedraza, J.M., Apodaca-Sánchez, M.A. et al. Phylogeny and pathogenicity of soilborne fungi associated with wilt disease complex of tomatillo (Physalis ixocarpa) in northern Sinaloa, Mexico. Eur J Plant Pathol (2020). https://doi.org/10.1007/s10658-020-02030-9

Download citation

Keywords

  • Fusarium
  • Rhizoctonia
  • Macrophomina
  • Neocosmospora
  • Pathogenicity
  • Phylogeny