Skip to main content
Log in

Phylogeny and pathogenicity of soilborne fungi associated with wilt disease complex of tomatillo (Physalis ixocarpa) in northern Sinaloa, Mexico

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Wilt disease complex is one of the most important diseases of tomatillo (Physalis ixocarpa) in the production areas of Mexico. Disease symptoms include wilting, poor growth, discoloration of vascular tissues, root rot, and death of plants. The aims of this study were to identify the fungi associated with wilt disease complex of tomatillo by the combination of phylogenetic analyses and morphological characterization, as well as to determine their pathogenicity and virulence on tomatillo seedlings. A total of 88 fungal isolates were obtained from symptomatic plants from 19 tomatillo fields distributed in northern Sinaloa, Mexico. Subsequently, a subset of 37 isolates representing the range of geographic origin was selected for further morphological and molecular characterization as well as pathogenicity tests. Phylogenetic analyses using Maximum Likelihood were used to identify 15 isolates of Rhizoctonia (ITS sequence data), 14 isolates of Fusarium (EF-1α sequence data), five isolates of Macrophomina (ITS, EF-1α, BT, and ACT sequence dataset) and three isolates of Neocosmospora (EF-1α sequence data) to species level. Pathogenicity tests were performed on tomatillo seedlings (cv. Gran Esmeralda) under greenhouse conditions. Phylogenetic analyses of 37 fungal isolates allowed the identification of Rhizoctonia solani AG 4-HGI (40.5%), Fusarium oxysporum (29.8%), Macrophomina phaseolina (13.5%), F. nygamai (8.1%) and Neocosmospora falciformis (8.1%). All fungal species were found to be pathogenic on tomatillo seedlings but a significant difference in disease severity was observed. To our knowledge, F. nygamai, M. phaseolina and N. falciformis were recorded for the first time infecting tomatillo in Mexico and worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad, S., Iqbal, S. H., & Khalid, A. N. (1997). Fungi of Pakistan. Pakistan: Sultan Ahmad Mycological Society of Pakistan.

    Google Scholar 

  • Alves, A., Crous, P. W., Correia, A., & Phillips, A. J. L. (2008). Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity, 28, 1–13.

    Google Scholar 

  • Apodaca-Sánchez, M. A., Barreras-Soto, M. A., Cortez-Mondaca, E., & Quintero-Benítez, J. A. (2008). Enfermedades del Tomate de Cáscara en Sinaloa. México: INIFAP: INIFAP–CIRNO. Campo Experimental Valle del Fuerte. Folleto Técnico No. 31.

  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.

    CAS  Google Scholar 

  • Correll, J. C., Puhalla, J. E., & Schneider, R. W. (1986). Identification of Fusarium oxysporum f. sp. apii on the basis of colony size, virulence, and vegetative compatibility. Phytopathology, 76, 396–400.

    Google Scholar 

  • Datnoff, L. E., & Sinclair, J. B. (1988). The interaction of Fusarium oxysporum and Rhizoctonia solani in causing root rot of soybeans. Phytopathology, 78, 771–777.

    Google Scholar 

  • De la Torre-Almaráz, R., Salazar-Segura, M., & Valverde, R. (2003). Etiology of husk tomato (Physalis ixocarpa B.) yellow mottle in Mexico. Agrociencia, 37, 277–289.

    Google Scholar 

  • Elias-Medina, R., Ponce-González, F., & Romero-Cova, S. (1997). Grupos anastomósicos de Rhizoctonia solani Kühn que atacan papa, frijol y haba en cuatro municipios del Estado de México y chile en San Luis Potosí. Revista Mexicana de Micología, 13, 33–40.

    Google Scholar 

  • Enciso-Rodríguez, F. E., González, C., Rodríguez, E. A., López, C. E., Landsman, D., Barrero, L. S., & Mariño-Ramírez, L. (2013). Identification of immunity related genes to study the Physalis peruviana–Fusarium oxysporum pathosystem. PLoS One, 8(7), e68500.

    PubMed  PubMed Central  Google Scholar 

  • Farr, D. F., & Rossman, A. Y. (2019). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved June 17, 2019, from https://nt.ars-grin.gov/fungaldatabases/.

  • Félix-Gastélum, R., Ávila-Díaz, J. A., Valenzuela-Cota, B. O., Trigueros-Salmeron, J. A., & Longoria-Espinoza, R. M. (2007). Identificación y control químico de los agentes causales de la mancha foliar y la cenicilla del tomatillo (Physalis ixocarpa Brot.) en el Norte de Sinaloa, México. Revista Mexicana de Fitopatología, 25, 1–10.

    Google Scholar 

  • Fuhlbohm, M. F., Ryley, M. J., & Aitken, E. A. B. (2012). New weed hosts of Macrophomina phaseolina in Australia. Australasian Plant Disease Notes, 7, 193–195.

    Google Scholar 

  • Gámez-Jiménez, C., Romero-Romero, J. L., Santos-Cervantes, M. E., Leyva-López, N. E., & Méndez-Lozano, J. (2009). Tomatillo (Physalis ixocarpa) as a natural new host for Tomato yellow leaf curl virus in Sinaloa, Mexico. Plant Disease, 93(5), 545.

    PubMed  Google Scholar 

  • Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Camacho, R., Rodríguez-Mendoza, M. N., Cárdenas-Soriano, E., Sandoval-Villa, M., & Colinas de León, M. T. (2006). Fertilización foliar con silicio como alternativa contra la marchitez causada por Fusarium oxysporum (Sheld) en tomate de cáscara. Revista Chapingo Serie Horticultura, 12(1), 69–75.

  • González-Pacheco, B. E., & Silva-Rosales, L. (2013). First report of Impatiens necrotic spot virus in Mexico in tomatillo and pepper plants. Plant Disease, 97(8), 1124.

    PubMed  Google Scholar 

  • Güney, I. G., & Güldür, M. E. (2018). Inoculation Techniques for assessing pathogenicity of Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum and Fusarium solani on pepper seedlings. Turkey Journal of Agricultural Research, 5(1), 1–8.

    Google Scholar 

  • Gupta, A. K., Choudhary, R., Bashyal, B. M., Rawat, K., Singh, D., & Solanki, I. S. (2019). First report of root and stem rot disease on papaya caused by Fusarium falciforme in India. Plant Disease. https://doi.org/10.1094/PDIS-11-18-2118-PDN.

    Article  PubMed  Google Scholar 

  • Koike, S. T., Gladders, P., & Paulus, A. O. (2007). Vegetable Diseases. A colour handbook (448 p). London: Manson Publishing.

    Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual (388 p). Iowa: Blackwell Publishing.

    Google Scholar 

  • Leyva-Madrigal, K. Y., Larralde-Corona, C. P., Apodaca-Sánchez, M. A., Quiroz-Figueroa, F. R., Mexia-Bolaños, P. A., Portillo-Valenzuela, S., Ordaz-Ochoa, J., & Maldonado-Mendoza, I. E. (2015). Fusarium species from the Fusarium fujikuroi species complex involved in mixed infections of maize in Northern Sinaloa, Mexico. Journal of Phytopathology, 163, 486–497.

    CAS  Google Scholar 

  • Machado, A. R., Pinho, D. B., Soares, D. J., Gomes, A. A. M., & Pereira, O. L. (2019). Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. European Journal of Plant Pathology, 153(1), 89–100.

    Google Scholar 

  • Martínez-Fernández, E., Martínez-Jaimes, P., Guillén-Sánchez, D., Peña-Chora, G., & Hernández-Hernández, V. M. (2015). Diversidad de Fusarium en las raíces de caña de azúcar (Saccharum officinarum) en el estado de Morelos, México. Revista Mexicana de Micología, 42, 33–43.

    Google Scholar 

  • Mauricio-Castillo, J. A., Reveles-Torres, L. R., Salas-Luévano, M. A., Franco-Bañuelos, A., Salas-Marina, M. A., & Salas-Muñoz, S. (2018). First report of ‘Candidatus Phytoplasma trifolii’-related strain associated with a new disease in tomatillo plants in Zacatecas, Mexico. Plant Disease, 102(8), 1653.

    Google Scholar 

  • Mayek-Pérez, N., López-Castañeda, C., González-Chavira, M., García-Espinosa, R., Acosta-Gallegos, J. A., Martínez de la Vega, O., & Simpson, J. (2001). Variability of Mexican isolates of Macrophomina phaseolina on bases of pathogenesis and AFLP genotype. Physiological and Molecular Plant Pathology, 59, 257–264.

    Google Scholar 

  • Méndez-Lozano, J., Rivera-Bustamante, R. F., Fauquet, C. M., & De la Torre-Almaraz, R. (2001). Pepper huasteco virus and Pepper golden mosaic virus are Geminiviruses affecting tomatillo (Physalis ixocarpa) crops in Mexico. Plant Disease, 85(12), 1291.

    PubMed  Google Scholar 

  • Meza-Moller, A., Esqueda, M., Gardea, A. A., Tiznado-Hernandez, M., & Virgen-Calleros, G. (2007). Variabilidad morfológica, patogénica y susceptibilidad a fungicidas de Rhizoctonia solani aislado de rizósfera de Vitis vinifera var. Perlette seedless. Revista Mexicana de Micología, 24, 1–7.

    Google Scholar 

  • Meza-Moller, A., Esqueda, M., Sanchez-Teyer, F., Vargas-Rosales, G., Gardea, A. A., & Tiznado-Hernandez, M. (2011). Genetic variability in Rhizoctonia solani isolated from Vitis vinifera based on amplified fragment length polymorphism. American Journal of Agricultural and Biological Sciences, 6(3), 317–323.

    Google Scholar 

  • Montero-Tavera, V., Guerrero-Aguilar, B. Z., Anaya-López, J. L., Martínez-Martínez, T. O., Guevara-Olvera, L., & González-Chavira, M. M. (2013). Genetic diversity of Rhizoctonia solani isolates (Kuhn) from pepper in Mexico. Revista Mexicana de Ciencias Agrícolas, 4(7), 1043–1054.

    Google Scholar 

  • Muñoz-Cabañas, R. M., Hernández-Delgado, S., & Mayek-Pérez, N. (2005). Análisis patogénico y genético de Macrophomina phaseolina (Tassi) Goid. en diferentes hospedantes. Revista Mexicana de Fitopatología, 23, 11–18.

    Google Scholar 

  • Navarrete-Maya, R., Trejo-Albarrán, E., Navarrete-Maya, J., Prudencio-Sains, J. M., & Acosta Gallegos, J. A. (2009). Reacción de genotipos de frijol a Fusarium spp. y Rhizoctonia solani bajo condiciones de campo e invernadero. Agricultura Técnica en México, 35, 455–466.

    Google Scholar 

  • Osorio-Guarín, J. A., Enciso-Rodríguez, F. E., González, C., Fernández-Pozo, N., Mueller, L. A., & Barrero, L. S. (2016). Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC genomics, 17, 248.

    PubMed  PubMed Central  Google Scholar 

  • Rentería-Martínez, M. E., Guerra-Camacho, M. A., Ochoa-Meza, A., Moreno-Salazar, S. F., Varela-Romero, A., Gutiérrez-Millán, L. E., & Meza-Moller, A. C. (2018). Multilocus phylogenetic analysis of fungal complex associated with root rot watermelon in Sonora, Mexico. Revista Mexicana de Fitopatología, 36(2), 233–255.

    Google Scholar 

  • Sandoval-Denis, M., & Crous, P. W. (2018). Removing chaos from confusion: assigning names to common human and animal pathogens in Neocosmospora. Persoonia, 41, 109–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Cervantes, M. E., Chávez-Medina, J. A., Fierro-Coronado, J. A., Ruelas-Ayala, R. D., Barreras-Soto, M. A., Méndez-Lozano, J., & Leyva-López, N. E. (2006). First report of a Candidatus Phytoplasma asteris infecting tomatillo (Physalis ixocarpa) in Sinaloa, México. New Disease Reports, 14, 29.

    Google Scholar 

  • Shivas, R. G. (1989). Fungal and bacterial diseases of plants in Western Australia. Journal of the Royal Society of Western Australia, 72, 1–62.

    Google Scholar 

  • SIAP. (2018). Atlas Agroalimentario 2012–2018. Servicio de Información Agroalimentaria y Pesquera. Mexico: Ciudad de México.

    Google Scholar 

  • Sneh, B., Burpee, L., & Ogoshi, A. (1991). Identification of Rhizoctonia species. Minnesota: American Phytopathological Society.

    Google Scholar 

  • Soto, G., Peña, A., Santiaguillo, J. F., Rodríguez, J. E., & Palacios, A. (1998). Resistencia a Fusarium sp. de 95 colectas de tomate de cáscara (Physalis spp.). Revista Chapingo Serie Horticultura, 4(1), 51–55.

    Google Scholar 

  • Sousa, E. S., Melo, M. P., Mota, J. M., Sousa, E. M. J., Beserra, J. E. A. Jr., & Matos, K. S. (2017). First report of Fusarium falciforme (FSSC 3 + 4) causing root rot in lima bean (Phaseolus lunatus L.) in Brazil. Plant Disease, 101(11), 1954.

  • Staden, R., Beal, K. F., & Bonfield, J. K. (1998). The Staden Package, 1998. In S. Misener & S. A. Krawetz (Eds.), Bioinformatics Methods and Protocols (pp. 115–130). New York: The Humana Press.

    Google Scholar 

  • Thompson, J. D., Gibson, T., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876–4882.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tirado-Ramírez, M. A., López-Orona, C. A., Velázquez-Alcaraz, TdeJ., Díaz-Valdés, T., Velarde-Félix, S., Martínez-Campos, A. R., & Retes-Manjarrez, J. E. (2018). First report of onion basal rot caused by Fusarium falciforme in Mexico. Plant Disease, 102(12), 2646.

    Google Scholar 

  • Urrea, R., Cabezas, L., Sierra, R., Cárdenas, M., Restrepo, S., & Jiménez, P. (2011). Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. Journal of Applied Microbiology, 111, 707–716.

    CAS  PubMed  Google Scholar 

  • Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180.

    PubMed  Google Scholar 

  • Vega-Gutiérrez, T. A., López-Orona, C. A., López-Urquídez, G. A., Velarde-Félix, S., Amarillas-Bueno, L. A., Martínez-Campos, A. R., & Allende-Molar, R. (2019a). Foot rot and wilt in tomato caused by Fusarium falciforme (FSSC 3 + 4) in Mexico. Plant Disease, 103(1), 157.

    Google Scholar 

  • Vega-Gutiérrez, T. A., Tirado-Ramírez, M. A., López-Urquídez, G. A., Angulo-Castro, A., Martínez-Gallardo, J. A., & López-Orona, C. A. (2019b). Fusarium falciforme (FSSC 3 + 4) causing root and stem rot in Papaya (Carica papaya) in Mexico. Plant Disease, 103(10), 2681.

    Google Scholar 

  • Virgen-Calleros, G., Olalde-Portugal, V., & Carling, D. E. (2000). Anastomosis groups of Rhizoctonia solani on potato in Central Mexico and potential for biological and chemical control. American Journal of Potato Research, 77, 219–224.

    CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand & J. J. Sninsky, & White T. J. (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). San Diego: Academic Press.

  • Young, N. D., & Healy, J. (2003). GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics, 4(1), 6.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Cai, J., He, W., & Zhang, Y. (2019). Macrophomina vaccinii sp. nov. causing blueberry stem blight in China. Mycokeys, 22, 1–14.

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank the National Council of Science and Technology (CONACYT) of Mexico for his doctoral scholarship. This research was financially supported by the CONACYT, project INFRA–2019–302117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Beltrán-Peña.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Human and animals rights

No human or animal was involved in this research by the authors.

Informed consent

All authors have reviewed the manuscript and approved its submission to the European Journal of Plant Pathology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala-Armenta, Q.A., Tovar-Pedraza, J.M., Apodaca-Sánchez, M.A. et al. Phylogeny and pathogenicity of soilborne fungi associated with wilt disease complex of tomatillo (Physalis ixocarpa) in northern Sinaloa, Mexico. Eur J Plant Pathol 157, 733–749 (2020). https://doi.org/10.1007/s10658-020-02030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02030-9

Keywords

Navigation