Pratylenchus brachyurus parasitism on soybean: effects on productivity, vegetative and nematological parameters and chemical properties

Abstract

The aim of this work was to evaluate the effect of Pratylenchus brachyurus parasitism on the vegetative and nematological parameters of soybean, as well as on the productivity, composition, isoflavone profile and antioxidant capacity of the grains. A completely randomized design with four nematode inoculum levels (0, 500, 1000 and 2000) was used. Plants without P. brachyurus presented higher productivity and lower values for vegetative parameters. Maximum reproduction of P. brachyurus (17,493 nematodes) was observed with the initial population of 1444 nematodes. With increasing inoculum level, the moisture, fiber, lipid and stachyose contents were reduced, while ashes, fructose, and sucrose levels were increased. The total phenolic compounds, total flavonoids and antioxidant capacity increased until an inoculum level of 1000 nematodes was reached. The highest concentration of isoflavones, namely, daidzein, genistin, genistein, glicitin, and acetyl-glicitin was detected at the inoculum level of 2000 nematodes. Therefore, the inoculum levels of P. brachyurus affected soybean development, as well as, the chemical composition of the grains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

  • 06 July 2020

    This erratum is published as Third author name should be read as Elza Iouko Ida instead of Elza IoukoIda.

References

  1. Andrade V., Cella V., Daroit L. & Silva J.F. (2009). Reação de diferentes genótipos de soja ao nematóide das lesões radiculares Pratylenchus brachyurus. In: Congresso Brasileiro de Soja, 2009. MERCOSOJA 2009 Goiânia, Embrapa: Londrina. https://www.alice.cnptia.embrapa.br/bitstream/doc/929360/1/CD4033.pdf. Accessed 9 June 2018.

  2. AOAC (Association of Official Analytical Chemists) (2016). Official methods of analysis, 20a ed. AOAC International, USA.

  3. Berger, M., Rasolohery, C. A., Cazalis, R., & Daydé, J. (2008). Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: Distinct pathways and genetic controls. Crop Science, 48, 700–708.

    CAS  Article  Google Scholar 

  4. Bilyeu, K. D., & Wiebold, W. J. (2016). Environmental stability of seed carbohydrate profiles in soybeans containing different alleles of the raffinose synthase 2 (RS2) gene. Journal of Agricultural and Food Chemistry, 64, 1071–1078.

    CAS  Article  Google Scholar 

  5. Boateng, J., Verghese, M., Walter, L. T., & Ogutu, S. (2008). Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT- Food Science and Technology, 20, 1–8.

  6. Bustament-Rangel, M., Delgado-Zamarreño, M. M., Pérez-Martín, L., Rodríguez-Gonzalo, E., & Domínguez-Álvarez, J. (2018). Analysis of Isoflavones in foods. Comprehensive Reviews in Food Science and Food Safety, 17, 391–411.

  7. Carlsson, A. S., Yilmaz, J. L., Green, A. G., Stymne, S., & Hofvander, P. (2011). Replacing fossil oil with fresh oil–with what and for what? European Journal of Lipid Science and Technology, 113, 872–831.

  8. Carrão-Panizzi, M. C., Berhow, M., Mandarino, J. M. G., & Oliveira, M. C. N. (2009). Enviromental and genetic variation of isoflavones content of soybean seeds grown in Brazil. Pesquisa Agropecuária Brasileira, 44, 1444–1451.

  9. Chapman, K. D., & Ohlrogge, J. B. (2012). Compartmentation of triacylglycerol accumulation in plants. Journal of Biological Chemistry, 287, 2288–2294.

  10. Chen M., Zhao Y., & Yu S. (2015).Optimization of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chemistry, 172, 543–550.

  11. Coolen, W. A., & D’herde, C. J. (1972). A method for the quantitative extraction of nematodes from plant tissue. Ghent: State of Nematology and Entomology Research Station, 77.

  12. Falcão H.G., Handa C.L., Silva M.B.R., De Camargo A.C., Shahidi F., Kurozawa L.E. & Ida E.I. (2018). Soybean ultrasound pre-treatment prior to soaking affects β-glucosidase activity, isoflavone profile and soaking time. Food Chemistry 269, 404–412.

  13. Ferreira, D. F. (2011). Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039–1042.

  14. Franchini J.C., Debiasi H., Dias W.P., Ramos Junior E.U. & Silva J.F.V. (2012). Perda de produtividade da soja em área infestada por nematoides das lesões radiculares na região médio norte do Mato Grosso. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/113678/1/Perda-de-produtividade-da-soja-em-area-infestada-por-nematoide-das-lesoes-radiculares-na-regiao-medio-norte-do-Mato-Grosso.pdf. Accessed 9 June 2018.

  15. Francilino, A. H., Pedrosa, E. M. R., Silva, E. F. F., Rolim, M. M., Cardoso, M. S. O., & Maranhão, S. R. V. L. (2017). Effects of water flow, plant-based baits, and soil per volume on Pratylenchus coffeae mobility. Nematropica, 47, 63–73.

    Google Scholar 

  16. Friguetto R.T.S., Hoffmann-Campo C.B., Baccan M. & Alves Filho J. (2012). Flavonoides em duas cultivares de soja (Glycinemax L. Merril) cultivadas sob aumento da ultravioleta B, em condições de campo. [Anais]... Embrapa Meio Ambiente, Jaguariúna, 2012. https://www.cnpma.embrapa.br/clim/work./anais/trab. Accessed 7 Jan 2019.

  17. Gangl, R., Behmüller, R., & Tenhaken, R. (2015). Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosyl hydrolase in Arabidopsis thaliana. Fron Plant Science, 6, 789.

  18. Goulart, A. M. C. (2008). In A. M. C. Goulart (Ed.), Aspectos gerais sobre nematóides-das-lesões-radiculares (gênero Pratylenchus). Embrapa Cerrados, Planaltina: Brazil.

    Google Scholar 

  19. Handa C.L., Couto U.R., Vicensoti A.H., Georgetti S.R. & Ida E.I. (2014). Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones. Food Chemistry, 152, 56–65.

  20. Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants; chemistry, metabolism and structure-activity relationships. Journal of Nutrition Biochemistry, 13, 572–584.

  21. Hong, N. H., Xuan, T. D., Eiji, T., & Khanh, T. D. (2004). Paddy weed control by higher plants from Southeast Asia. Crop Protection, 23, 255–261.

    Article  Google Scholar 

  22. Hung, P. V., Maeda, T., Miyatake, K., & Morita, N. (2009). Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Research International, 42, 185–190.

    CAS  Article  Google Scholar 

  23. Inomoto, M. M., Siqueira, K. M. S., & Machado, A. C. Z. (2011). Sucessão de cultura sob pivô central para controle de fitonematoides: variação populacional, patogenicidade e estimativa de perdas. Tropical Plant Pathology, 36, 178–185.

  24. Kim E.H., Ro H.M., Kim, S.L., Kim H. S. & Chung I.M. (2012). Analysis of isoflavone, phenolic, soyasapogenol, and tocopherol compounds in soybean [Glycine max (L.) Merrill] germplasms of different seed weights and origins. Journal of Agriculture and Food Chemistry, 60, 6045–6055.

  25. Lee, S. W., & Lee, J. H. (2009). Effects of oven-drying, roasting, and explosive puffing process on isoflavone distributions in soybeans. Food Chemistry, 112, 316–320.

    CAS  Article  Google Scholar 

  26. Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M.X., Arondel, V., Bates, P.D., Baud, S., Bird, D., Debono, A., Durrett, T.P., Franke, R.B., Graham, I.A., Katayama, K., Kelly, A.A., Larson, T., Markham, J.E., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K.M., Wada, H., Welti, R., Xu, C., Zallot, R. & Ohlrogge J. (2013). Acyl-Lipid Metabolism. Arabidopsis Book, 11, e0161. https://www.ncbi.nlm.nih.gov/pubmed/23505340. Accessed 7 Jan 2019.

  27. Mainardi, J. T., & Asmus, G. L. (2015). Danos e potencial reprodutivo de Pratylenchus brachyurus em cinco espécies vegetais. Revista de Agricultura Neotropical, 2, 38–47.

  28. Messina, M., & Messina, V. (2010). The role of soy in vegetarian diets. Nutrients, 2, 855–888.

  29. Nguyen, Q. T., Kisiala, A., Andreas, P., Neil Emery, R. J., & Narina, S. (2016). Soybean seed development: Fatty acid and Phytohormone metabolism and their interactions. Current Genomics, 17, 241–260.

  30. Oostenbrink, M. (1966). Major characteristics of the relation between nematodes and plant. Mededelingen / Landbouwhogeschool Wageningen, 66, 1–46.

  31. Pascual-Teresa, S., Hallund, J., Talbot, D., Schroot, J., Willians, C. M., Bugel, S., & Cassidy, A. (2006). Absorption of isoflavones in humans: effects of food matrix and processing. Journal of Nutrition Biochemistry, 17, 257–264.

  32. Qiu, D., Vuong, T., Valliyodan, B., Shi, H., Guo, B., Shannon, J. G., & Nguyen, H. T. (2015). Identification and characterization of a stachyose synthase gene controlling reduced stachyose content in soybean. Theoretical and Applied Genetics, 128, 2167–2176.

  33. Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., Cai, Z., Knorr, D., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50, 670–675.

  34. Ribani, M., Collins, C. H., & Grespan-Bottoli, C. B. (2014). Desenvolvimento e validação de método para separação de isoflavonas em extrato seco de soja. Ciência e Natura, 36, 501–510.

  35. Rivero, R. M., Ruiz, J. M., Garcia, P. C., López-Lefebre, L. R., Sánchez, E., & Romero, L. (2001). Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160, 315–321.

    CAS  Article  Google Scholar 

  36. Santos, T. F. S., Ribeiro, N. R., Polizel, A. C., Matos, D. S., & Fagundes, E. A. A. (2011). Controle de Pratylenchus brachyurus em esquema de rotação/sucessão com braquiária e estilosantes. Enciclopedia Biosfera, 7, 248–254.

  37. Silva, D. R. O., Agostinetto, D., Vargas, L., Langaro, A. C., & Duarte, T. V. (2014). Habilidade competitiva, alterações no metabolismo secundário e danos celulares de soja competindo com Conyza bonariensis resistente e suscetível a glyphosate. Planta Daninha, 32, 579–589.

  38. Southey, J. F. (1970). Laboratory methods for work with plant and soil nematodes (5th ed.). Ministry of Agriculture Fisheries and Food: London UK.

    Google Scholar 

  39. Suárez-López, M. M., Kizlansky, A., & López, L. B. (2006). Evaluación de lacalidad de las proteínas enlos alimentos calculando el escore de aminoácidos corregido por digestibilidad. Nutrición Hospitalaria, 21, 47–51.

  40. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (Eds.). (2017). Plant physiology and development (6th ed.). Porto Alegre, Brazil: Artmed.

    Google Scholar 

  41. Thaipong, K., Boonprakob, U., Crosby, K., Cisneroszevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition Analysis, 19, 669–675.

  42. Uzzan, M., & Labuza, T. P. (2004). Critical issues in R&D of soy isoflavone enriched foods and dietary supplements. Journal of Food Science, 69, 77–86.

    Google Scholar 

  43. Vilela, L., Martha Junior, G. B., Macedo, M. C. M., Marchão, R. L., Guimarães Júnior, R., Pulrolnik, K., & Maciel, G. A. (2011). Sistemas de integração lavoura-pecuária na região do Cerrado. Pesquisa Agropecuária Brasileira, 46, 1127–1138.

  44. Yang, S. O., Chang, P. S., & Lee, J. H. (2006). Isoflavone distribution and b-glucosidase activity in Cheonggukjang, a traditional Korean whole soybean-fermented food. Food Science and Biotechnology, 15, 96–101.

  45. Yoshiara, L. Y., Madeira, T. B., Delaroza, F., Da Silva, J. B., & Ida, E. I. (2014). Optimization of soy isoflavone extraction with different solvents using the simplex centroid mixture design. International Journal of Food Sciences and Nutrition, 63, 978–986.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carla Marcondes Castanheira.

Ethics declarations

This paper reports original results obtained by the authors which has not been published elsewhere nor submitted for publication elsewhere. The authors read and approved the final paper.

Conflict of interest

Authors declare that they have no conflict of interest.

Research involving human participants and/or animals

In this research neither human participants nor animals were involved.

Informed consent

Not relevant to this work, because the research does not involve human participants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castanheira, C.M., Falcão, H.G., Ida, E.I. et al. Pratylenchus brachyurus parasitism on soybean: effects on productivity, vegetative and nematological parameters and chemical properties. Eur J Plant Pathol 157, 651–661 (2020). https://doi.org/10.1007/s10658-020-02011-y

Download citation

Keywords

  • Glycine max
  • Root lesion nematode
  • Productivity
  • Isoflavone
  • Antioxidant activity