Histopathology of Phakopsora euvitis on Vitis vinifera

Abstract

Rust (Phakopsora euvitis) is an important fungal disease in grapevines grown in tropical and subtropical regions. Epidemiological works have been conducted on plant disease resistance, however, little is known about defense mechanisms of resistance to the disease. Leaves of Vitis vinifera cv. Moscato Giallo were inoculated with P. euvitis and lesions were formed with pustules surrounded by water-soaked halo 17 days after inoculation. Foliar tissue of injured and sound material was fixed and submitted to histological techniques. Emergence of pustules from stomata was observed. In water-soaked halo, hyphae of fungus were not observed. In this region, foliar blade presented mesophyll modified by cell hypertrophy with reduction of intercellular spaces and accumulation of pectic compounds. Hypertrophied cells showed parietal thickenings in the cellulose and pectin layers. In the areas delimited by water-soaked halo in the pustule region, the fungus grew vigorously in intercellular spaces of chlorophyll parenchyma; however, vascular bundles also restricted the advance of fungus where sheath cells present parietal pectic thickenings. Therefore, although Vitis vinifera cv. Moscato showed rust symptoms on leaves, pathogen colonization was limited by the formation of water-soaked haloes and vascular bundles, which resulted in minor injuries along the foliar limbo.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adaskaveg, J. E. (1992). Defense mechanisms in leaves and fruit of trees to fungal infection. In R. A. Blanchette & A. R. Biggs (Eds.), Defense mechanisms of woody plants against fungi (pp. 207–245). New York: Sping-Verlag.

    Google Scholar 

  2. Agrios, G. N. (2005). Plant pathology (5th ed.). San Diego: Academic Press.

    Google Scholar 

  3. Albersheim, P., Darvil, A., Roberts, K., Sederoff, R., & Staehelin, A. (2011). Plant cell walls. From chemistry to biology (430p). New York: Garland Science.

    Google Scholar 

  4. Amorim, L., Spósito, M. B., & Kuniyuki, H. (2016). Doenças da videira. In L. Amorim, J. A. M. Rezende, A. Bergamin Filho, & L. E. A. Camargo (Eds.), Manual de Fitopatologia: Doenças das plantas cultivadas (pp. 745–585). Ouro Fino- MG: Agronômica Ceres.

    Google Scholar 

  5. Angelotti, F., Scapin, C. R., Tessmann, D. J., Vida, J. B., Vieira, R. A., & Souto, E. R. (2008). Resistência de genótipos de videira à ferrugem. Pesquisa Agropecuária Brasileira, 43(9), 1129–1134.

    Article  Google Scholar 

  6. Angelotti, F., Scapin, C. R., Tessmann, D. J., Vida, J. B., & Canteri, M. G. (2014). The effect of temperature, leaf wetness and light on development of grapevine rust. Australasian Plant Pathology, 43(1), 9–13.

    Article  Google Scholar 

  7. Appezzato-da-Glória, B., Bron, I. U., & Machado, S. R. (2004). Lanosidade em cultivares de pêssego (Prunus persica (L.) Batsch): estudos anatômicos e ultra-estruturais. Revista Brasileira de Botânica, 27(1), 55–61.

    Google Scholar 

  8. Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(228), 1–8.

    Google Scholar 

  9. Candolfi-Vasconcelos, M. C., & Koblet, W. (1990). Yield, fruit quality, bud fertility and starch reserves of the wood as a function of leaf removal in Vitis vinifera - evidence of compensation and stress recovering. Vitis, 29, 199–221.

    Google Scholar 

  10. Chamberlain, C. J. (1932). Methods in plant histology (5th ed.p. 416). Chicago: The University of Chicago Press.

    Google Scholar 

  11. Chatasiri, S., & Ono, Y. (2008). Phylogeny and taxonomy of the Asian grapevine leaf rust fungus, Phakopsora euvitis, and its allies (Uredinales). Mycoscience, 49, 66–74.

    Article  CAS  Google Scholar 

  12. Chowdhury, J., Henderson, M., Schweizer, P., Burtonm, R. A., Fincher, G. B., & Little, A. (2014). Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei. New Phytologist, 204(3), 650–660.

    Article  CAS  PubMed  Google Scholar 

  13. FAOSTAT, 2017. <http://www.fao.org/faostat/en/>. Acessed in 10/09/2017.

  14. Greenspan, P., Mayer, E. P., & Fowler, S. D. (1985). Nile red Ba selective fluorescent stain for intracellular lipid droplets. Journal of Cell Biology, 100, 965–973.

    Article  CAS  PubMed  Google Scholar 

  15. Hennessy, C. R., Daly, A. M., & Hearnden, M. N. (2007). Assessment of grapevine 214 cultivars for resistance to Phakopsora euvitis. Australasian Plant Pathology, 36(4), 313–317.

    Article  Google Scholar 

  16. Hinch, J. M., & Clarke, A. E. (1982). Callose formation in Zea mays as a response to infection with Phytophthora cinnamomi. Physiological Plant Pathology, 21, 121–124.

    Article  Google Scholar 

  17. Horridge, G. A., & Tamm, S. L. (1969). Critical point drying for scanning electron microscopy study of cilliar motion. Science, 3869, 871–818.

    Google Scholar 

  18. Hückelhoven, R. (2007). Cell Wall –associated mechamisms of disease resistance and susceptibility. Annual Review of Phytopathology, 45, 101–127.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes, J., & McCully, M. E. (1975). The use os brithtener in study of plant structure. Stain Technology, 50, 319–452.

    Article  CAS  PubMed  Google Scholar 

  20. Johansen, D. A. (1940). Plant microtechnique. New York: McGraw-Hill Company Inc..

    Google Scholar 

  21. Karabourniotis, G., Borman, J. F., & Liakoura, V. (1999). Different leaf surface characteristics of three grape cultivars affect leaf optical properties as measured with fibre optics: Possible implication in stress tolerance. Australian Journal of Plant Physiology, 26, 47–53.

    Google Scholar 

  22. Karnovsky, M. J. (1965). A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, 27, 137–138.

    Google Scholar 

  23. Keogh, R. C., Deverall, B. J., & Mc Leod, S. (1980). Comparison of histological and physiological responses to Phakopsora pachyrhizi in resistant and susceptible soybean. Transactions of the British Mycological Society, 74(2), 329–333.

    Article  Google Scholar 

  24. Lionetti, V., Cervone, F., & Bellincampi, D. (2012). Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. Plant Physiology, 169(16), 1623–1630.

    Article  CAS  Google Scholar 

  25. Marques, J. P. R., Hoy, J. W., Appezzato-da-Glória, B., Viveros, A. F. G., Vieria, M. L. C., & Baisakh, N. (2018). Sugarcane cell wall-associated defense responses to infection by Sponsorium scitameneum. Frontiers in Plant Science, 9, 698.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nogueira Júnior, A. F., Ribeiro, R. V., Appezzato-da-Glória, B., Soares, M. K. M., Rasera, J. B., & Amorim, L. (2017). Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine. Frontiers in Plant Science, 8, 1675.

    Article  PubMed  PubMed Central  Google Scholar 

  27. O’Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue. Protoplasma, 59, 368–373.

    Article  Google Scholar 

  28. Peaucell, A., Braybrook, S., & Herman-Höfte, H. (2012). Cell wall mechanics and growth control in plants: the role of pectins revisited. https://doi.org/10.3389/fpls.2012.00121.

  29. Platero, M., & Tejerina, G. (1976). Calcium nutrition in Phaseolus vulgaris in relation to its resistance to Erwinia carotovora. Phytopathologische Zeitschrift, 85, 314–319.

    Article  Google Scholar 

  30. Primiano, I. V., Loehrer, M., Amorim, L., & Schaffrath, U. (2017). Asian grapevine leaf rust caused by Phakopsora euvitis: An important disease in Brazil. Plant Pathology, 66, 691–701.

    Article  Google Scholar 

  31. Tessmann, D. J., Dianese, J. C., Gent, W., Vida, J. B., & May-de-Mio, L. L. (2004). Grape rust caused by Phakopsora euvitis, a new disease for Brazil. Fitopatologia Brasileira, 29(3), 338–338.

    Article  Google Scholar 

  32. Unger, S., Büche, C., Boso, S., & Kassemeyer, H-H. (2007). The course of colonization of two different genotypes by indicates compatible and incompatible host-pathogen interactions. Phytopathology, 97(7), 780–786.

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the São Paulo Research Foundation (FAPESP Proc: 2013/24003-9). We thank the Center of Support in Electron Microscopy Applied to Agriculture, ESALQ, USP, at the laboratory of Plant Anatomy of ESALQ (LanVeg) for the use of equipment. We also thank Msc. Marli Kasue Missake Soares for helping in material preparation for the anatomical analysis. BLN thanks Dr. Antonio F. Nogueira Jr. for his comments to the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcel Bellato Spósito.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navarro, B.L., Marques, J.P.R., Appezzato-da- Glória, B. et al. Histopathology of Phakopsora euvitis on Vitis vinifera. Eur J Plant Pathol 154, 1185–1193 (2019). https://doi.org/10.1007/s10658-019-01719-w

Download citation

Keywords

  • Anatomy
  • Fungal infection
  • Grapevine rust
  • Hipertrophy
  • Pectin
  • Resistance mechanisms