Skip to main content
Log in

Apple blotch disease (Marssonina coronaria (Ellis & Davis) Davis) – review and research prospects

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Apple blotch, caused by Marssonina coronaria, is a serious and widely distributed fungal disease that causes huge losses to apple production especially in South and East Asia. The pathogen causes black spots on apple fruits, leaves and premature defoliation, resulting in weakened physiological balance of the host, reduced tree vigor and decreased yield. It is not clear when the pathogen first occurred in Europe but the disease has become increasingly important in Europe due to its unexpected occurrences in European organic orchards in the last decade. Hence, information on the pathogen host range and geographical distribution, symptoms, biology and disease cycle, as well as epidemiology is vital in developing control strategies. Only the asexual stage of the pathogen has been observed in Europe to date. Therefore, mating and sexual recombination mechanism of the pathogen as well as its overall evolutionary potential is unknown. Altogether, population genetics, importance of primary inoculum, overwintering and the time point of disease outbreak are less researched issues of this pathogen. Host resistance is thought to be the most reliable means to prevent the further spread of this pathogen in organic orchards. However, knowledge about the disease and its interaction with the host is a prerequisite for breeding durable resistant apple cultivars. This review highlights the information available from previous research on M. coronaria and its occurrence on apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badiu D, Arion F, Muresan I, Lile R, Mitre V (2015) Evaluation of Economic Efficiency of Apple Orchard Investments. Sustainability 7(8), 10521–10533.

  • Bensaude, M. (1926). Diseases of economic plants in the Azores. Kew Bulletin of Miscellaneous Information, 9, 381–389, 1926.

  • Back, C. G., & Jung, H. Y. (2014). Biological characterization of Marssonina coronaria infecting apple trees in Korea. The Korean Journal of Mycology, 42(3), 183-190.

  • Davis, J. J. (1903). Third supplementary list of parasitic fungi of Wisconsin. Transaction of the Wisconsin Academy of Science, Art and Letters, 14(1), 83–106.

    Google Scholar 

  • Davis, J.J. (1914). Marssonina coronariae (Ellis & Davis) Davis. Transactions of the Wisconsin Academy of Science, 17(2), 881.

  • Debener, T., & Byrne, D. H. (2014). Disease resistance breeding in rose: Current status and potential of biotechnological tools. Plant Science, 228, 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Didelot, F., Caffier, V., Orain, G., Lemarquand, A., & Parisi, L. (2016). Sustainable management of scab control through the integration of apple resistant cultivars in a low-fungicide input system. Agriculture Ecosystems and Environment, 217, 41–48.

    Article  Google Scholar 

  • Ellis, M. A., Ferree, D. C., Funt, R. C., & Madden, L. V. (1998). Effects of apple scab-resistant cultivars on use patterns of inorganic and organic fungicides and economics of disease control. Plant Disease, 82(4), 428–433.

    Article  CAS  PubMed  Google Scholar 

  • Engler, A. (1906). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie Band37.Leipzig: Verlag von Wilhelm Engelmann.

  • Funes, I., Aranda, X., Biel, C., Carbó, J., Camps, F., Molina, A., Herralde, F., Grau, B., & Savé, R. (2016). Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricultural Water Management, 164(1), 19–27.

    Article  Google Scholar 

  • Gachomo, E. W., & Kotchoni, S. O. (2007). Detailed description of developmental growth stages of Diplocarpon rosae in Rosa: a core building block for efficient disease management. Annals of Applied Biology, 151, 233–243.

    Article  Google Scholar 

  • Gao, Y., Li, B., Dong, X., Wang, C., Li, G., & Li, B. (2011). Effects of temperature and moisture on sporulation of Diplocarpon mali on overwintered apple leaves. Scientia Agricultura Sinica, 44(7), 1367–1374.

    Google Scholar 

  • Harada, Y., Sawamura, K., & Konno, K. (1974). Diplocarpon mali sp. Nov., the perfect stage of apple blotch fungus Marssonina coronaria. Annals of the Phytopathological Society of Japan, 40, 412–418.

    Article  Google Scholar 

  • Hinrichs-Berger, J., & Müller, G. (2013). Zum Auftreten von Marssonina coronaria an Apfel in Baden-Württemberg. Journal für Kulturpflanzen, 65, 347–350.

    Google Scholar 

  • Holb, I. J. (2006). Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. European Journal of Plant Pathology, 115, 293–307.

    Article  Google Scholar 

  • Holb, I. J. (2007). Classification of apple cultivar reactions to scab in integrated and organic production systems. Canadian Journal of Plant Pathology, 29, 251–260.

    Article  CAS  Google Scholar 

  • Holb, I. J., De Jong, P. F., & Heijne, B. (2003). Efficacy and phytotoxicity of lime Sulphur in organic apple production. The Annals of Applied Biology, 142, 225–233.

    Article  CAS  Google Scholar 

  • Horbach, R., Navarro-Quesada, A. R., Knogge, W., & Deising, H. B. (2011). When and how to kill a plant cell: infection strategies of plant pathogenic fungi. Journal of plant physiology, 168(1), 51-62.

  • Huang, Y. (1986). Overwintering characteristics of Marssonina coronaria (Ellis & Davis) Davis. Journal Southwest Forestry College, 1, 60–65.

    CAS  Google Scholar 

  • Ivić, D., Sever, Z., & Tomić, Ž. (2017). Marssonina leaf blotch (Diplocarpon mali), a new disease of apple in Croatia. Glasilo biljne zaštite, 17(3), 323–328.

    Google Scholar 

  • Kwon, D., Kim, S., Kim, Y., Son, M., Kim, K., An, D., & Kim, B. H. (2015). An Empirical Assessment of the Economic Damage Caused by Apple Marssonina Blotch and Pear Scab Outbreaks in Korea. Sustainability, 7(12), 16588–16598.

  • Le Corre, M. (2015). Attenion chute de feuilles! Reussier Fruit & Legumes, 348, 48.

    Google Scholar 

  • Lee, H., & Shin, H. (2000). Taxonomic studies on the genus Marssonina coronaria in Korea. Mycobiology, 281, 39–46.

    Article  Google Scholar 

  • Lee, Y. H., Cho, W. D., Kim, W. K., Lee, E. J., Han, S. J., & Chung, H. S. (1993). Detailed survey of apple and pear diseases in major fruit producing areas of Korea (88-92). Korean Journal of Plant Pathology, 9, 47–51.

    CAS  Google Scholar 

  • Lee, D. H., Back, C., Win, N. K. K., Choi, K., Kim, K., Kang, I., Choi, C., Yoon, T., Uhm, J. Y., & Jung, H. (2011). Biological characterization of Marssonina coronaria associated with apple blotch disease. Mycobiology, 39(3), 200–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite, R. P., Tsuneta, M., & Kishino, A. Y. (1986). Apple leaf spot caused by Marssoninacoronaria. Fitopathologia Brasileira, 3, 725–759.

    Google Scholar 

  • Li, Y., Hirst, P. M., Wan, Y., & Liu, Y. (2012). Resistance to Marssonina coronaria and Alternaria alternata apple pathotype in the major apple cultivars and rootstocks used in China. Horticultural Science, 47(9), 1241–1244.

    Google Scholar 

  • Magnus, P. W. (1906). Notwendige Umänderung des Namens der Pilzgattung Marssonia Fisch. Druck von C. Heinrich.

  • Mc Kinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.

    Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    Article  CAS  PubMed  Google Scholar 

  • Miyake, I. (1907). Über einige Pilz-Krankheiten unserer Nutzpflanzen. Botanisches Magazin Tokyo, 21, 49–53.

    Google Scholar 

  • Naef, A., Häseli, A., Schärer, H.J. (2013). Marssonina Blattfall, eine neue Apfelkrankheit. Schweizer Zeitschrift für Obst- und Weinbau, 16, 8–11.

  • Nakata, K., & Takimoto, K. (1928). List of diseases of cultivated plants in Korea. Bulletin Experiment Station Korea, 15, 1–146.

    Google Scholar 

  • O’Rourke, D., Janick, J., & Sansavini, S. (2003). World apple cultivar dynamics. Chronica Horticulturae, 43, 10–13.

    Google Scholar 

  • Park, J.S. (1958). Fungous diseases of plants in Korea (1). College Agriculture Chungnam National University Bulletin, 1, 106.

  • Parmelee, J. A. (1971). Marssonina leaf spot of apple. Canadian Plant Disease Survey, 51(2), 91–92.

    Google Scholar 

  • Peck, G. M., Preston, K. A., Reganold, J. P., & Fellman, J. K. (2006). Apple orchard productivity and fruit quality under organic, conventional, and integrated management. HortScience, 41(1), 99–107.

    Article  CAS  Google Scholar 

  • Peil, A., Kellerhals, M., Höfer, M., & Flachowsky, H. (2011). Apple breeding- from origin to genetic engineering. Fruit Vegetables and Cereal Science and Biotechnology, 5(Special Issue 1), 118–138.

    Google Scholar 

  • Persen, U., Steffek, R., Freiding, C., & Bedlan, G. (2012). Erstnachweis von Diplocarpon mali an Malusdomestica in Österreich. Journal für Kulturpflanzen, 64(5), 168–170.

    Google Scholar 

  • Piepenbring, M., Camarena, J., Cruz, D., Gomez, A.K. (2011). New records of pathogenic fungi on cultivated plants in Panama. https://www.researchgate.net/profile/Dario_Cruz/publication/229455805_New_records_of_pathogenic_fungi_on_cultivated_plants_in_Panama/links/00b7d51e335241b280000000.pdf. Accessed 28 May 2014.

  • Saccardo, P.A. (1912). Annales Mycologici Editi in Notitiam Scientiae Mycologicae Universalis. 10,313.

  • Sharma, J. N. (2000). Marssonina blotch – A new disease of apple and its control. Indian Journal of Plant Protection, 28, 100–101.

    Google Scholar 

  • Sharma, J. N., Sharma, A., & Sharma, P. (2004). Outbreak of Marssonina blotch in warmer climates causing premature leaf fall problem of apple and its management. Acta Horticulturae, (662), 405–409.

  • Sharma, N., Thakur, V. S., Mohan, J., Khurana, S. M., & Sharma, S. (2011). Epidemiology of Marssonina blotch (Marssonina coronaria) of apple in India. Indian Phytopathology, 62(3), 348–359.

    Google Scholar 

  • Sharma, N., Thakur, V. S., Sharma, S., Mohan, J., & Khurana, S. M. (2012). Development of Marssonina blotch (Marssonia coronaria) in different genotypes of apple. Indian Phytopatholoy, 64(4), 358–362.

    Google Scholar 

  • Sutton, T.B., Aldwinckle, H.S., Agnello, A.M., Walgenbach, J.F. (2014). Compendium of apple and pear diseases and pests, Second Edition. APS Press, 1, 48–49.

  • Tamietti, G., & Matta, A. (2003). First report of leaf blotch caused by Marssonina coronaria on apple in Italy. Plant Disease, 87(8), 1005.

    Article  CAS  PubMed  Google Scholar 

  • Terefe-Ayana, D., Aneela, Y., Loan, T., Kaufmann, H., Biber, A., Kühr, A., Linde, M., & Debener, T. (2011). Mining disease-resistance genes in roses: functional and molecular characterization of the Rdr1 locus. Frontiers in Plant Science, 2, 1–11.

    Article  Google Scholar 

  • Terefe-Ayana, D., Kaufmann, H., Linde, M., & Debener, T. (2012). Evolution of the Rdr1 TNL-cluster in roses and other Rosaceae. BMC Genomics, 13, 409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapman, M. (2013). Erste Erfahrungen mit einer neuen aggressiven Blattfallkrankheit an Apfel. European Fruit Magazine, 6, 16–17.

    Google Scholar 

  • Van Bruggen, A. H. C., Gamliel, A., & Finckh, M. R. (2015). Plant disease management in organic farming systems. Pest Management Science, 72, 30–44.

    Article  CAS  PubMed  Google Scholar 

  • van Bueren, E. L., Backes, G., De Vriend, H., & Østergård, H. (2010). The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica, 175(1), 51-64.

  • Van Treuren, R., Kemp, H., Ernsting, G., Jongejans, B., Houtman, H., & Visser, L. (2010). Microsatellite genotyping of apple (Malus× domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genetic Resources and Crop Evolution, 57(6), 853-865.

  • Wang, M., Zhou, H., Guo, Y., Wan, Y., Zhao, Z., & Guo, Y. (2013). Comparisons of induced pathogenesis-related proteins in resistant and susceptible apple cultivars in response to inoculation of the pathogen Marssonina coronaria. Journal of American Pomological Society, 67(3), 137–146.

    Google Scholar 

  • Weibel, F. P., Daniel, C., Tamm, L., Willer, H., & Schwartau, H. (2012). Development of organic fruit in Europe. Acta Horticulturae, 1001, 19–34.

    Google Scholar 

  • Whitaker, V. M., Debener, T., Robert, A. V., & Hokanson, S. C. (2010). A standard set of differentials and unified nomenclature for an international collection of Diplocarpon rosae races. Plant Pathology, 59, 745–752.

    Article  Google Scholar 

  • Xu, J., Li, M., Jiao, P., Tao, H., Wie, N., Ma, F., & Zhang, J. (2015). Dynamic transcription profiles of 'Qinguan' apple (Malus ×domestica) leaves in response to Marssonina coronaria inoculation. Frontiers in Plant Science, 6(842), 1–11.

    CAS  Google Scholar 

  • Xue, A. G., Sutton, J. C., Dale, A., & Sullivan, A. (1996). Differences in virulence of Diplocarpon earlianum isolates on selected strawberry cultivars. Phytoprotection, 77, 113–118.

    Article  Google Scholar 

  • Yin, L., Li, M., Ke, X., Li, C., Zou, Y., Liang, D., & Ma, F. (2013a). Evaluation of Malus germplasm resistance to Marssonina apple blotch. European Journal of Plant Pathology, 136, 597–602.

    Article  Google Scholar 

  • Yin, L., Zou, Y., Li, M., Ke, X., Li, C., Liang, D., & Ma, F. (2013b). Resistance of Malus plants to Diplocarpon mali infection is associated with the antioxidant system and defense signaling pathway. Physiological and Molecular Plant Pathology, 84, 146–152.

    Article  CAS  Google Scholar 

  • Zhao, H., Huang, L., Xiao, C. J., Liu, J., Wei, J., & Gao, X. (2010). Influence of culture media and environmental factors on mycelial growth and conidial production of Diplocarpon mali. Letters in Applied Microbiology, 50, 639–644.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, H., Han, Q., Wang, J., Gao, X., Xiao, C., Liu, J., & Huang, L. (2013). Cytology of infection of apple leaves by Diplocarpon mali. European Journal of Plant Pathology, 136, 41–49.

    Article  Google Scholar 

  • Zheng, J., & Sutton, J. C. (2009). Inoculum concentration, leaf age, wetness duration, and temperature in relation to infection of strawberry leaves by Diplocarpon earlianum. Canadian Journal of Plant Pathology, 16(3), 177–186.

    Article  Google Scholar 

  • Zhou, Q., Gao, H., Wang, M., Xu, Y., Guo, Y. Z., Wan, Y. Z., & Zhao, Z. Y. (2012). Characterization of defence related genes in the 'Qinguan' apple in response to Marssonina coronaria. South African Journal of Botany, 80, 36–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Andreas Peil and Viola Hanke (Julius Kühn-Institut) for proofreading the manuscript. We also thank Michel Giraud (CTIFL), Jan Hinrichs-Berger (LTZ Augustenberg), Hans Scheinpflug, Beatrice Lauria-Pluschkell and Markus Linde (Leibniz Universität Hannover) for helpful discussions, suggestions and ideas.

Glossary

Acervulus, subepidermal, asexual fruiting body; Anamorph, imperfect or asexual stage of a fungus; Apothecium, open cup- or saucer-shaped fruiting body of ascomycetes containing asci; Ascospore, sexually produced spore in an ascus; Ascus, sac-like cell of the ascocarp containing ascospores; Biotroph, organism that can live and multiply only on another living organism; Conidiophore, conidia producing hypha; Conidium, asexual fungus spore developed at the end of conidiophores; Hemibiotroph, organism with a parasitic and saprophytic life part; Holomorph, total of teleomorphic and anamorphic stage of a fungus; Hypha, single branch of mycelium; Necrothroph, organism that feed only on dead tissue; Mycelium, hypha shaping the entire fungus; Paraphysis, sterile hypha separating fruiting bodies inside the apothecium; Saprophyte, organism that feed on dead organic material; Spermatium, male gamete of rust fungi; Subcuticularhypha, parallel mycelia between adaxial epidermic cells and cuticle; Teleomorph, perfect or sexual stage of a fungus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wöhner.

Ethics declarations

Human and animal rights

The authors can assure that this article does not contain any studies with human or animal subject.

Conflict of interests

The authors declare that there are no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wöhner, T., Emeriewen, O.F. Apple blotch disease (Marssonina coronaria (Ellis & Davis) Davis) – review and research prospects. Eur J Plant Pathol 153, 657–669 (2019). https://doi.org/10.1007/s10658-018-1590-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1590-9

Keywords

Navigation