European Journal of Plant Pathology

, Volume 153, Issue 2, pp 599–625 | Cite as

Occurrence of grapevine trunk diseases affecting the native cultivar Pedro Ximénez in southern Spain

  • Carlos Agustí-Brisach
  • Ana López-Moral
  • Mª Carmen Raya-Ortega
  • Rosa Franco
  • Luis F. Roca-Castillo
  • Antonio TraperoEmail author


‘Pedro Ximénez’ is a native grapevine cultivar from Córdoba province (Andalusia region, southern Spain), which has been seriously affected by fungal trunk pathogens causing general decline along the last decade. However, the occurrence of grapevine trunk diseases (GTDs) in Andalusia region has not been studied yet. Therefore, the main goal of this study was to evaluate the occurrence of GTDs affecting ‘Pedro Ximénez’, and to characterize the causal agents by morphological and molecular methods. Between 2016 and 2017, 25 commercial vineyards of cv. Pedro Ximénez showing decline symptoms were surveyed. Fungal isolations were done and 23 representative isolates of the fungal trunk pathogens associated with the different GTDs (black-foot and Petri disease, Botryosphaeria and eutypa dieback, and esca) were selected according to colony colour and mycelial growth development. Colony colour, mycelial growth, and conidial characteristics were defined. The effect of temperature on mycelial growth was evaluated. Phylogenetic analyses of ribosomal genes (ITS) and functional protein regions (ACT, HIS, TEF, TUB) were preformed to confirm their identification. The especies Cadophora luteo-olivacea, Cryptovalsa ampelina, Dactylonectria alcacerensis, Da. novozelandica, Diplodia corticola, D. mutila, D. seriata, Eutypa lata, Fomitiporia mediterranea, Ilyonectria liriodendri, Neofusicoccum mediterraneum, N. parvum, Phaeoacremonium iranianum, Pm. minimum and Phaeomoniella chlamydospora were identified. Despite grapevine fungal trunk pathogens being well known in the main grape growing areas worldwide, this present study is relevant because it has been focused in the native cultivar Pedro Ximénez, improving our knowledge about aetiology of GTDs in southern Spain towards make decisions about management strategies preventing infections.


Aetiology Characterization Pedro Ximénez Trunk pathogens Vitis vinifera 



Carlos Agustí-Brisach is the holder of a ‘Juan de la Cierva-Incorporación’ fellowship from MINECO. We acknowledge J. Portero and Á. Portero for providing valuable advice on the affected commercial vineyards by GTDs in the area of the PDO Montilla-Moriles. The authors thank F. Luque for her skilful technical assistance in the laboratory.

Compliance with ethical standards

Authors declared that this manuscript have not published elsewhere. All the authors have read very carefully and approved current version of this manuscript. All authors also declared that the data or images have not manipulated.

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This research is focused on identification of some fungi causing diseases on plants. This article does not contain any experiments with human participants or animals.

Informed consent

Please be informed that authors are satisfied to publish this work in European Journal of Plant Pathology.


  1. Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: An update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261.Google Scholar
  2. Agustí-Brisach, C., Gramaje, G., Armengol, J., & García-Jiménez, J. (2013a). Hongos de la madera en planta joven de vid: situación actual y estrategias para su control. Tierras, 202, 108–113.Google Scholar
  3. Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013b). Detection of black-foot and petri disease pathogens in natural soils of grapevine nurseries and vineyards using bait plants. Plant and Soil, 364, 5–13.Google Scholar
  4. Agustí-Brisach, C., León, M., García-Jiménez, J., & Armengol, J. (2015). Detection of grapevine fungal trunk pathogens on pruning shears and evaluation of their potential for plant infection. Plant Disease, 99, 976–981.Google Scholar
  5. Agustí-Brisach, C., Franco, R., López-Moral, A., Raya-Ortega, M. C., Roca, L. F., & Trapero, A. (2017). Las enfermedades de la madera de la vid en la región de Montilla-Moriles afectando a la variedad autóctona Pedro Ximénez. Vida Rural, 432, 30–38.Google Scholar
  6. Analytical Software (2013). Statistix 10. User's manual. Tallahassee, FL.Google Scholar
  7. Armengol, J., Vicent, A., Torné, L., García-Figueres, F., & García-Jiménez, J. (2001). Fungi associated with esca and grapevine declines in Spain: A three-year survey. Phytopathologia Mediterranea, 40, 325–329.Google Scholar
  8. Aroca, A., García-Figueres, F., Bracamonte, L., Luque, J., & Raposo, R. (2006). A survey of trunk pathogens within rootstocks of grapevines in Spain. European Journal of Plant Pathology, 115, 195–202.Google Scholar
  9. Aroca, A., Luque, J., & Raposo, R. (2008a). First report of Phaeoacremonium viticola affecting grapevines in Spain. Plant Pathology, 57, 386.Google Scholar
  10. Aroca, A., Raposo, R., Gramaje, D., Armengol, J., Martos, S., & Luque, J. (2008b). First report of Lasiodiplodia theobromae associated with decline of grapevine rootstock mother plants in Spain. Plant Disease, 92, 832.Google Scholar
  11. Aroca, A., Gramaje, D., Armengol, J., García-Jiménez, J., & Raposo, R. (2010). Evaluation of the grapevine nursery propagation process as a source of Phaeoacremonium spp. and Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in rootstock mother vines in Spain. European Journal of Plant Pathology, 126, 165–174.Google Scholar
  12. Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi. 4th edition. St. Paul, MN: APS Press.Google Scholar
  13. Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., Spagnolo, A., Clément, C., & Fontaine, F. (2013). Grapevine trunk disease: Complex and still poorly understood. Plant Pathology, 62, 243–265.Google Scholar
  14. Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012a). Cylindrocarpon root rot: Multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.Google Scholar
  15. Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012b). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116, 62–80.Google Scholar
  16. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.Google Scholar
  17. Carlucci, A., Lops, F., Mostert, L., Halleen, F., & Raimondo, M. L. (2017). Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathologia Mediterranea, 56(1), 10–39.Google Scholar
  18. Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.Google Scholar
  19. Crous, P. W., & Gams, W. (2000). Phaeomoniella chlamydospora gen. et comb. nov., a causal organism of Petri grapevine decline and esca. Phytopathologia Mediterranea, 39, 112–188.Google Scholar
  20. Crous, P. W., Phillips, A. J. L., & Wingfield, M. J. (1993). New records of Cylindrocladium and Cylindrocladiella spp. in South Africa. Mycological Research, 42, 302–305.Google Scholar
  21. Crous, P. W., Groenewald, J. Z., Risede, J. M., & Hywel-Jones, N. L. (2004). Calonectria species and their Cylindrocladium anamorphs: Species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–429.Google Scholar
  22. Crous, P.W., Verkley, G. J. M., Groenewald, J. Z., & Samson, R. A. (2009). CBS Laboratory Manual Series 1. Utrecht, The Netherlands: CBS-KNAW Fungal Biodiversity Centre Utrecht.Google Scholar
  23. Dhingra, O. D., & Sinclair, J. B. (1995). Basic plant pathology methods. 2nd ed. Boca Raton, FL: CRC Press.Google Scholar
  24. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.Google Scholar
  25. Fischer, M. (2002). A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycological Progress, 1, 315–324.Google Scholar
  26. Fischer, M. (2006). Biodiversity and geographic distribution of Basidiomycetes causing esca-associated white rot in grapevine: A worldwide perspective. Phytopathologia Mediterranea, 45, S30–S42.Google Scholar
  27. Giménez-Jaime, A., Aroca, A., Raposo, R., García-Jiménez, J., & Armengol, J. (2006). Occurrence of fungal pathogens associated with grapevine nurseries and the decline of young vines in Spain. Journal of Phytopathology, 15, 598–602.Google Scholar
  28. Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Google Scholar
  29. Gramaje, D. (2015). Manejo de las enfermedades fúngicas de la madera de la vid en viveros y nuevas plantaciones. Phytoma, 274, 83–85.Google Scholar
  30. Gramaje, D., & Armengol, J. (2011). Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Disease, 95, 1040–1055.Google Scholar
  31. Gramaje, D., Alaniz, S., Pérez-Sierra, A., Abad-Campos, P., García-Jiménez, J., & Armengol, J. (2008a). First report of Phaeoacremonium mortoniae causing petri disease of grapevine in Spain. Plant Disease, 91, 1206.Google Scholar
  32. Gramaje, D., Alaniz, S., Pérez-Sierra, A., Abad-Campos, P., García-Jiménez, J., & Armengol, J. (2008b). First report of Phaeoacremonium scolyti causing petri disease of grapevine in Spain. Plant Disease, 92, 836.Google Scholar
  33. Gramaje, D., Armengol, J., Colino, M. I., Santiago, R., Moralejo, E., Olmo, D., Luque, J., & Mostert, L. (2009a). First report of Phaeoacremonium inflatipes, P. iranianum and P. sicilianum causing petri disease of grapevine in Spain. Plant Disease, 93, 964.Google Scholar
  34. Gramaje, D., Armengol, J., Mohammadi, H., Banihashemi, Z., & Mostert, L. (2009b). Novel Phaeoacremonium species associated with petri disease and esca of grapevines in Iran and Spain. Mycologia, 101, 920–929.Google Scholar
  35. Gramaje, D., Aguilar, M. I., & Armengol, J. (2011a). First report of Phaeoacremonium krajdenii causing petri disease of grapevine in Spain. Plant Disease, 95, 615.Google Scholar
  36. Gramaje, D., Mostert, L., & Armengol, J. (2011b). Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathologia Mediterranea, 50, S112–S126.Google Scholar
  37. Gramaje, D., Agustí-Brisach, C., Pérez-Sierra, A., Moralejo, E., Olmo, D., Moster, L., Damm, U., & Armengol, J. (2012). Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia, 28, 1–13.Google Scholar
  38. Gramaje, D., Moster, L., Groenewald, J. Z., & Crous, P. W. (2015). Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biology, 119, 759–783.Google Scholar
  39. Halleen, F., Crous, P. W., & Petrini, O. (2003). Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australasian Plant Pathology, 32, 47–52.Google Scholar
  40. Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. Nov. associated with black-foot disease of grapevines (Vitis spp). Studies in Mycology, 50, 431–455.Google Scholar
  41. Halleen, F., Fourie, P. H., & Crous, P. W. (2006). A review of black-foot disease of grapevine. Phytopathologia Mediterranea, 45, S55–S67.Google Scholar
  42. Halleen, F., Fourie, P. H., & Crous, P. W. (2007a). Control of black foot disease in grapevine nurseries. Plant Pathology, 56, 637–645.Google Scholar
  43. Halleen, F., Mostert, L., & Crous, P. W. (2007b). Pathogenicity testing of lesser-known vascular fungi of grapevines. Australasian Plant Pathology, 36, 277–285.Google Scholar
  44. Kornerup, A., & Wanscher, J. H. (1963). Methuen handbook of colour. London, UK: Methuen and Co. Ltd.Google Scholar
  45. Larkin, M.A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.
  46. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Blackwell Oxford, UK: Publishing Ltd.Google Scholar
  47. Lombard, L., Van der Merwe, N. A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53(3), 515–532.Google Scholar
  48. López-Moral, A., Raya-Ortega, M. C., Agustí-Brisach, C., Roca, L. F., Lovera, M., Luque, F., Arquero, O., & Trapero, A. (2017). Morphological, pathogenic and molecular characterization of Colletotrichum acutatum isolates causing almond anthracnose in Spain. Plant Disease, 101, 2034–2045.Google Scholar
  49. Luque, J., Martos, S., Aroca, A., Raposo, R., & García-Figueres, F. (2009). Symptoms and fungi associated with declining mature grapevine plants in Northeast Spain. Journal of Plant Pathology, 91, 381–390.Google Scholar
  50. Luque, J., Garcia-Figueres, F., Legorburu, F. J., Muruamendiaraz, A., Armengol, J., & Trouillas, F. P. (2012). Species of Diatrypaceae associated with grapevine trunk diseases in eastern Spain. Phytopathologia Mediterranea, 51, 528–540.Google Scholar
  51. Martin, M. T., & Cobos, R. (2007). Identification of fungi associated with grapevine decline in Castilla y León (Spain). Phytopathologia Mediterranea, 46, 18–25.Google Scholar
  52. Moral, J., Muñoz-Díez, C., González, N., Trapero, A., & Michailides, T. J. (2010). Characterization and pathogenicity of Botryosphaeriaceae species collected from olive and other hosts in Spain and California. Phytopathology, 100, 1340–1351.Google Scholar
  53. Moral, J., Agustí-Brisach, C., Pérez Rodríguez, M., Xavíer, C., Raya, M. C., Rhouma, A., & Trapero, A. (2017). Identification of fungal species associated with branch dieback of olive and resistance of table cultivars to Neofusicoccum mediterraneum and Botryosphaeria dothidea. Plant Disease, 101, 306–316.Google Scholar
  54. Mostert, L., Groenewald, C. J., Sumerbell, R. C., Gams, W., & Crous, P. W. (2006). Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology, 54, 1–115.Google Scholar
  55. Mugnai, L., Graniti, A., & Surico, G. (1999). Esca (black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Disease, 83, 404–418.Google Scholar
  56. Navarrete, F., Abreo, E., Martínez, S., Bettucci, L., & Lupo, S. (2011). Pathogenicity and molecular detection of Uruguayan isolates of Greeneria uvicola and Cadophora luteo-olivacea associated with grapevine trunk diseases. Phytopathologia Mediterranea, 50, S166–S175.Google Scholar
  57. Niekerk, J. M., van Crous, P. W., Groenewald, J. Z., Fourie, P. H., & Halleen, F. (2004). DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia, 96, 781–798.Google Scholar
  58. O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.Google Scholar
  59. Overton, B. E., Stewart, E. L., & Wenner, N. G. (2005). Molecular phylogenetics of grapevine decline fungi from Pennsylvania and New York. Phytopathologia Mediterranea, 44, 90–91.Google Scholar
  60. Phillips, A. J. L., Alves, A., Pennycook, S. R., Johnston, P. R., Ramaley, A., Akulov, A., & Crous, P. W. (2008). Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia, 21, 29–55.Google Scholar
  61. Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z., & Crous, P. W. (2013). The Botryosphaeriaceae: Genera and species known from culture. Studies in Mycology, 76, 51–167.Google Scholar
  62. Rolshausen, P. E., Úrbez-Torres, J. R., Rooney-Latham, S., Eskalen, A., Smith, R. J., & Gubler, W. D. (2010). Evaluation of pruning wound susceptibility and protection against fungi associated with grapevine trunk diseases. American Journal of Enology and Viticulture, 61, 113–119.Google Scholar
  63. Rolshausen, P. E., Baumgartner, K., Travadon, R., Fujiyoshi, P., Pouzoulet, J., & Wilcox, W. F. (2014). Identification of Eutypa spp. causing Eutypa dieback of grapevine in eastern North America. Plant Disease, 98, 483–491.Google Scholar
  64. Sánchez-Torres, P., Hinarejos, R., González, V., & Tuset, J. J. (2008). Identification and characterization of fungi associated with esca in vineyards of the Comunidad Valenciana (Spain). Spanish Journal of Agricultural Research, 6, 650–660.Google Scholar
  65. Schroers, H. J., Zerjav, M., Munda, A., Halleen, F., & Crous, P. W. (2008). Cylindrocarpon pauciseptatum sp. nov., with notes on Cylindrocarpon species with wide, predominantly 3-septate macroconidia. Mycological Research, 112, 82–92.Google Scholar
  66. Slippers, B., Crous, P. W., Benman, S., Coutinho, T. A., Wingfield, B. D., & Wingfield, M. J. (2004). Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia, 96, 83–101.Google Scholar
  67. Spagnolo, A., Marchi, G., Peduto, F., Phillips, A. J. L., & Surico, G. (2011). Detection of Botryosphaeriaceae species within grapevine woody tissues by nested PCR, with particular emphasis on the Neofusicocum parvum/N. ribis -complex. European Journal of Plant Pathology, 129, 485–500.Google Scholar
  68. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary 16 Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.Google Scholar
  69. Trouillas, F. P., Pitt, W. M., Sosnowski, M. R., Huang, R., Peduto, F., Loschiavo, A., Savocchia, S., Scott, E. S., & Gubler, W. D. (2011). Taxonomy and DNA phylogeny of Diatrypaceae associated with Vitis vinifera and other woody plants in Australia. Fungal Diversity, 49, 203–223.Google Scholar
  70. Úrbez-Torres, J. R. (2011). The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea, 50, S5–S45.Google Scholar
  71. Úrbez-Torres, J. R., Peduto, F., Vossen, P. M., Krueger, W. H., & Gubler, W. D. (2013). Olive twig and branch dieback: Etiology, incidence, and Distribution in California. Plant Disease, 97, 231–244.Google Scholar
  72. Úrbez-Torres, J. R., Haag, P., Bowen, P., & O’Gorman, D. T. (2014). Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with esca and petri diseases of grapevine. Plant Disease, 98, 469–482.Google Scholar
  73. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols. A guide to methods and applications (pp. 315–322). San Diego, CA: Elsevier Academic Press.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Departamento de Agronomía, ETSIAMUniversidad de Córdoba (UCO)CórdobaSpain

Personalised recommendations