European Journal of Plant Pathology

, Volume 153, Issue 2, pp 583–597 | Cite as

Host response of Arabidopsis thaliana ecotypes is determined by Sclerotinia sclerotiorum isolate type

  • Xin Tian Ge
  • Martin J. BarbettiEmail author


Studies were undertaken to characterise the interactions of eight Sclerotinia sclerotiorum isolates/pathotypes on leaves of intact plants of 17 Arabidopsis thaliana ecotypes. For lesion diameter and lesion incidence, there were significant (P ≤ 0.001) effects of pathogen isolates, A. thaliana ecotypes, and a significant interaction between isolates and ecotypes in all three experiments. Resistance to S. sclerotiorum infection across the ecotypes ranged from highly susceptible through to resistant and the bioassay was sensitive enough to allow assessment of small differences in partial relative resistances across the ecotypes. While some A. thaliana ecotypes, such as Sha, Bay-0, Ws-1 and Ws-2, were found to be highly susceptible to all S. sclerotiorum isolates tested, others, such as Er-0, Jea and Cvi-0, showed a consistent level of resistance, and of these latter, Er-0 showed the highest and most consistent expression of resistance. In contrast, Col-0, Nd-0 and Oy-0 responses ranged from relative resistant to highly susceptible, depending upon the isolate being tested. Some isolates, such as MBRS1, elicited a wide range of resistance responses across the ecotypes, making these isolates most useful for screening the full range of A. thaliana ecotypes for their responses to S. sclerotiorum. In contrast, other isolates such as ‘Cabbage’ only generated lesions over a very narrow size range of host resistance response and hence could limit the ability of such isolates to differentiate resistances across diverse A. thaliana populations. Increasing the number of ecotypes tested increased the capacity to differentiate both the levels of relative resistance amongst test ecotypes and the varying levels of aggressiveness between different isolates. This is the first known study to demonstrate how Arabidopsis resistance responses can be expressed or compromised by variation in aggressiveness amongst different S. sclerotiorum isolates and/or pathotypes.


Sclerotinia sclerotiorum Sclerotinia rot Arabidopsis thaliana Brassicaceae Crucifer Brassica Host resistance 



Xintian Ge was the recipient of an International Postgraduate Research Scholarship, The University of Western Australia, a scholarship from Kunming Floral World Bio-Tech Co. Ltd., Kunming, Peoples Republic of China, and ‘top-up’ funding by the Institute of Agriculture at the University of Western Australia. We appreciate the operational funding support for this research provided by the Australia Research Council and the Department of Agriculture and Food Western Australia (Project LP100200113, ‘Factors responsible for host resistance to the pathogen Sclerotinia sclerotiorum for developing effective disease management in vegetable Brassicas’); and The University of Western Australia, for additional operational funding this work. We are greatly indebted to Dr. Oliver Berkowitz, Murdoch University, Western Australia for supplying seed of the Arabidopsis ecotypes. Exceptional technical support is acknowledged from Mr. Robert Creasy and Mr. Bill Piasini in the UWA Plant Growth Facilities.

Compliance with ethical standards

Human and animal studies

This research did not involve any animal and/or human participants.

Conflict of interest

The authors declare that they have no conflict of interests.


  1. Balague´, C., Lin, B., Alcon, C., Flottes, G., Malmstrom, S., Kohler, C., Neuhaus, G., Pelletier, G., Gaymard, F., & Roby, D. (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 15, 365–379.CrossRefGoogle Scholar
  2. Barbetti, M. J., Banga, S. K., Fu, T. D., Li, Y. C., Singh, D., Liu, S. Y., Ge, X. T., & Banga, S. S. (2014). Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica, 197, 47–59.Google Scholar
  3. Barbetti, M. J., Li, C. X., Banga, S. S., Banga, S. K., Singh, D., Singh, P. S., Singh, R., Liu, S. Y., & You, M. P. (2015). New host resistances in Brassica napus and B. juncea from Australia, China and India: Key to managing Sclerotinia stem rot (Sclerotinia sclerotiorum) without fungicides. Crop Protection, 78, 127–130.CrossRefGoogle Scholar
  4. Behla, R., Hirani, A. H., Zelmer, C. D., Yu, F., Fernando, W. G. D., McVetty, P., & Li, G. (2017). Identification of common QTL for resistance to Sclerotinia sclerotiorum in three doubled haploid populations of Brassica napus (L.). Euphytica, 213, 260.CrossRefGoogle Scholar
  5. Bert, P. F., Jouan, I., de Labrouhe, T. D., Serre, F., Nicolas, P., & Vear, F. (2002). Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theoretical and Applied Genetics, 105, 985–993.CrossRefGoogle Scholar
  6. Boccongelli, C., Buzi, A., Chilosi, G., Magro, P., & Bressan, R. A. (2003a). Evaluation of Arabidopsis thaliana ecotypes for resistance to damping-off caused by Pythium sylvaticum and stem rot caused by Sclerotinia sclerotiorum. Journal of Plant Pathology, 85, 286.Google Scholar
  7. Boccongelli, C., Chilosi, G., Magro, P., & Bressan, R. A. (2003b). Isolation of a new Arabidopsis mutant with enhanced disease tolerance to Sclerotinia sclerotiorum. Journal of Plant Pathology, 85, 277.Google Scholar
  8. Chen, X. T., Chen, F. F., Chen, L. Q., Zheng, L., Lu, G. D., & Wang, Z. H. (2008). Isolation and analysis of oxalic acid-insensitive mutant of Arabidopsis thaliana. Chinese Journal of Biotechnology, 24, 203–208.CrossRefGoogle Scholar
  9. Clark, R. M., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T. T., Fu, G., Hinds, D. A., Chen, H., Frazer, K. A., Huson, D. H., Scholkopf, B., Nordborg, M., Ratsch, G., Ecker, J. R., & Weigel, D. (2007). Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science, 317, 338–342.CrossRefGoogle Scholar
  10. Clarkson, J. P., Coventry, E., Kitchen, J., Carter, H. E., & Whipps, J. M. (2017a). Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathology, 62, 309–324.CrossRefGoogle Scholar
  11. Clarkson, J. P., Warmington, R. J., Walley, P. G., Denton-Giles, M., Barbetti, M. J., Brodal, G., & Nordskog, B. (2017b). Population structure of Sclerotinia subarctica and Sclerotinia sclerotiorum in England, Scotland and Norway. Frontiers in Microbiology, 8(490).
  12. Dai, F. M., Xu, T., Wolf, G. A., & He, Z. H. (2006). Physiological and molecular features of the pathosystem Arabidopsis thaliana L.-Sclerotinia sclerotiorum Libert. Journal of Integrative Plant Biology, 48, 44–52.CrossRefGoogle Scholar
  13. Delourme, R., Barbetti, M. J., Snowdon, R., Zhao, J., & Manzanares-Dauleux, M. (2011). Genetics and genomics of resistance. In D. Edwards, J. Batley, I. A. P. Parkin, & C. Kole (Eds.), Genetics, genomics and breeding of oilseed brassicas (pp. 276–318). USA: Science Publishers, CRC Press.Google Scholar
  14. Dickman, M. B., & Mitra, A. (1992). Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogenesis. Physiological and Molecular Plant Pathology, 41, 255–263.CrossRefGoogle Scholar
  15. Garg, H., Li, H., Han, S., Sivasithamparam, K., & Barbetti, M. J. (2008). Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotpes. Australasian Plant Pathology 37, 106–111.Google Scholar
  16. Garg, H., Kohn, L. M., Andrew, M., Li, H., Sivasithamparam, K., & Barbetti, M. J. (2010). Pathogenicity of morphologically different isolates of Sclerotinia sclerotiorum with Brassica napus and B. juncea genotypes. European Journal of Plant Pathology, 126, 305–315.CrossRefGoogle Scholar
  17. Ge, X., Li, Y. P., Wan, Z. J., You, M. P., Finnegan, P. M., Banga, S. S., Sandhu, P. S., Garg, H., Salisbury, P. A., & Barbetti, M. J. (2012). Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field. Crop Research, 127, 248–258.CrossRefGoogle Scholar
  18. Ge, X. T., You, M. P., & Barbetti, M. J. (2015). Virulence differences among Sclerotinia sclerotiorum isolates determines host cotyledon resistance responses in Brassicaceae genotypes. European Journal of Plant Pathology, 143, 527–541.CrossRefGoogle Scholar
  19. Glazebrook, J., Rogers, E. E., & Ausubel, F. M. (1996). Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics, 143, 973–982.Google Scholar
  20. Goodwin, S. B., Allard, R. W., & Webster, R. K. (1990). A nomenclature for Rhynchosporium secalis pathotypes. Phytopathology, 80, 1330–1336.CrossRefGoogle Scholar
  21. Guo, X., & Stotz, H. U. (2007). Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmoic acid, salicylic acid, and ethylene signaling. Molecular Plant-Microbe Interactions, 20, 1384–1395.CrossRefGoogle Scholar
  22. Kim, H. S., & Diers, B. W. (2000). Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Science, 40, 55–61.CrossRefGoogle Scholar
  23. Li, C. X., Li, H., Sivasithamparam, K., Fu, T. D., Li, Y. C., Liu, S. Y., & Barbetti, M. J. (2006). Expression of field resistance under western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Australian Journal of Agricultural Research, 57, 1131–1135.CrossRefGoogle Scholar
  24. Li, C. X., Li, H., Siddique, A. B., Sivasithamparam, K., Salisbury, P., Banga, S. S., Banga, S., Chattopadhyay, C., Kumar, A., Singh, R., Singh, D., Agnihotri, A., Liu, S. Y., Li, Y. C., Tu, J., Fu, T. D., Wang, Y. F., & Barbetti, M. J. (2007). The importance of the type and time of inoculation and assessment in the determination of resistance in Brassica napus and B. juncea to Sclerotinia sclerotiorum. Australian Journal of Agricultural Research, 58, 1198–1203.CrossRefGoogle Scholar
  25. Li, C. X., Liu, S. Y., Sivasithamparam, K., & Barbetti, M. J. (2009). New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm screened under Western Australian conditions. Australasian Plant Pathology, 38, 149–152.CrossRefGoogle Scholar
  26. Loudet, O., Chaillou, S., Camilleri, C., Bouchez, D., & Daniel-Vedele, F. (2002). Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104, 11730–1184.Google Scholar
  27. Maxwell, J. J., Brick, M. A., Byrne, P. F., Schwartz, H. F., & Shan, X. (2007). Quantitative trait loci linked to white mold resistance in common bean. Crop Science, 47, 2285–2294.CrossRefGoogle Scholar
  28. Micic, Z., Hahn, V., Bauer, E., Schon, C. C., & Knapp, S. J. (2004). QTL mapping of Sclerotinia midstalk-rot resistance in sunflower. Theoretical and Applied Genetics, 109, 1474–1484.CrossRefGoogle Scholar
  29. Mitchell-Olds, T., & Schmitt, J. (2006). Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952.Google Scholar
  30. Mullins, E., Quinlan, C., & Jones, P. (1999). Isolation of mutants exhibiting altered resistance to Sclerotinia sclerotiorum from small M2 populations of an oilseed rape (Brassica napus) variety. European Journal of Plant Pathology, 105, 465–475.CrossRefGoogle Scholar
  31. Nakazawa, M., Ichikawa, T., Ishikawa, A., Kobayashi, H., Tsuhara, Y., Kawashima, M., Suzuki, K., Muto, S., & Matsui, M. (2003). Activation tagging, a novel tool to dissect the functions of a gene family. Plant Journal, 34, 741–750.CrossRefGoogle Scholar
  32. Pedras, M. S. C., & Ahiahonu, P. W. K. (2004). Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum. Journal of Chemical Ecology, 30, 2163–2179.CrossRefGoogle Scholar
  33. Perchepied, L., Balagué, C., Riou, C., Claudel-Renard, C., Rivière, N., Grezes-Besset, B., & Roby, D. (2010). Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 23, 846–860.CrossRefGoogle Scholar
  34. Rana, K., Atri, C., Gupta, M., Akhatar, J., Sandhu, P. S., Kumar, N., Jaswal, R., Barbetti, M. J., & Banga, S. S. (2017). Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa. Scientific Reports, 7, 5904. Scholar
  35. Rowe, H. C., & Kliebenstein, D. J. (2008). Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics, 180, 2237–2250.CrossRefGoogle Scholar
  36. Singh, D., Singh, R., Salisbury, P., & Barbetti, M. J. (2011). Genetic diversity in Australian, Indian and Chinese oilseed Brassica germplasm against sclerotinia-rot resistance. Proceedings of the International Rapeseed Congress, June 5–9, 2011, Prague, Czech Republic. pp. 665–669.Google Scholar
  37. Taylor, A., Coventry, E., Jones, J. E., & Clarkson, J. P. (2015). Resistance to a highly aggressive isolate of Sclerotinia sclerotiorum in a Brassica napus diversity set. Plant Pathology, 64, 932–940.CrossRefGoogle Scholar
  38. Taylor, A., Rana, K., Handy, C., & Clarkson, J. P. (2018). Resistance to Sclerotinia sclerotiorum in wild Brassica species and the importance of Sclerotinia subarctica as a Brassica pathogen. Plant Pathology, 67, 433–444.CrossRefGoogle Scholar
  39. Thomma, B., Eggermont, K., Penninckx, I., Mauch-Mani, B., Vogelsang, R., Cammue, B., & Broekaert, W. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Science U.S.A., 95, 15107–15111.CrossRefGoogle Scholar
  40. Thomma, B. P., Eggermont, K., Tierens, K., & Broekaert, W. (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistanceof Arabidopsis to infection by Botrytis cinerea. Plant Physiology, 121, 1093–1102.CrossRefGoogle Scholar
  41. Thomma, B. P., Penninckx, I. A., Cammue, B. P., & Broekaert, W. F. (2001). The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology, 13, 63–68.CrossRefGoogle Scholar
  42. Uloth, M., You, M. P., Finnegan, P. M., Banga, S. S., Banga, S. K., Yi, H., Salisbury, P., & Barbetti, M. J. (2013). New sources of resistance to Sclerotinia sclerotiorum for crucifer crops. Field Crops Research, 154, 40–52.CrossRefGoogle Scholar
  43. Uloth, M., You, M. P., Finnegan, P. M., Banga, S. S., Yi, H., & Barbetti, M. J. (2014). Seedling resistance to Sclerotinia sclerotiorum as expressed across diverse cruciferous species. Plant Disease, 98, 184–190.CrossRefGoogle Scholar
  44. Uloth, M., Clode, P. L., You, M. P., Cawthray, G., & Barbetti, M. J. (2015). Temperature adaptation in Sclerotinia sclerotiorum affects its ability to infect Brassica carinata. Plant Pathology, 64, 1140–1148.CrossRefGoogle Scholar
  45. Uloth, M., You, M. P., & Barbetti, M. J. (2016). Host resistance to Sclerotinia stem rot in historic and current Brassica napus and B. juncea varieties: Critical management implications. Crop and Pasture. Science, 66, 841–848.Google Scholar
  46. Volko, S. M., Boller, T., & Ausubel, F. M. (1998). Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. Genetics, 149, 5376–5548.Google Scholar
  47. Wang, A. R., Zhang, C. H., Zhang, L. L., Lin, W. W., Lin, D. S., Lu, G. D., Zhou, J., & Wang, Z. H. (2009). Identification of Arabidopsis mutants with enhanced resistance to Sclerotinia stem rot disease from an activation-tagged library. Journal of Phytopathology, 157, 63–69.CrossRefGoogle Scholar
  48. Wu, J., Cai, G., Tu, J., Li, L., Liu, S., Luo, X., Zhou, L., Fan, C., & Zhou, Y. (2013). Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One, 8(7), e67740.CrossRefGoogle Scholar
  49. Yang, B., Srivastava, S., Deyholos, M. K., & Kav, N. N. V. (2007). Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Science, 173, 156–171.CrossRefGoogle Scholar
  50. Yin, X., Yi, B., Chen, W., Zhang, W., Tu, J., Fernando, W. G. D., & Fu, T. (2010). Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica, 173, 25–35.CrossRefGoogle Scholar
  51. You, M. P., Uloth, M. B., Xi, X., Banga, S. S., Banga, S. K., & Barbetti, M. J. (2016). Valuable new resistances ensure improved management of Sclerotinia stem rot (Sclerotinia sclerotiorum) in horticultural and oilseed Brassica species. Journal of Phytopathology, 164, 291–299.CrossRefGoogle Scholar
  52. Zhao, J., & Meng, J. (2003). Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 106, 759–764.CrossRefGoogle Scholar
  53. Zhao, J., Udall, J., Quijada, P., Grau, C., Meng, J., & Osborn, T. (2006). Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theoretical and Applied Genetics, 112, 509–516.CrossRefGoogle Scholar
  54. Zhou, L. C., Yu, Q., Liu, S. Y., & Zhou, B. W. (1994). Evaluation of Sclerotinia resistance in rapeseed. Chinese Oilseed Crops, 4((suppl.)), 69–72.Google Scholar
  55. Zhu, W., We, W., Fu, Y., Cheng, J., Xie, J., Li, G., Yi, X., & Jiang, D. H. (2013). A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One, 8(1), e53901.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.UWA School of Agriculture and Environment M084 and the UWA Institute of Agriculture, Faculty of ScienceThe University of Western AustraliaCrawleyAustralia
  2. 2.School of Molecular and Life Sciences, Faculty of Science and EngineeringCurtin UniversityBentleyAustralia

Personalised recommendations