European Journal of Plant Pathology

, Volume 153, Issue 2, pp 465–473 | Cite as

Investigating hybridisation between the forms of Pyrenophora teres based on Australian barley field experiments and cultural collections

  • B. Poudel
  • M. S. McLean
  • G. J. Platz
  • J. A. McIlroy
  • M. W. Sutherland
  • A. MartinEmail author


Pyrenophora teres f. teres (Ptt) and P. teres f. maculata (Ptm) cause net and spot form of net blotch of barley (Hordeum vulgare L.), respectively. Both pathogens co-exist in barley fields and each can reproduce sexually, resulting in hybridisation and potential generation of novel virulences that could overcome barley host resistances. In this study, three field experiments were conducted during three successive years to investigate the occurrence of hybridisation. Susceptible barley was sown and inoculated with Ptt and Ptm. Form-specific PCR markers were used to analyse 822 conidia and 223 ascospores sampled from infected leaf tissue and 317 P. teres isolates collected across Australia during 1976–2015. None of the isolates were hybrids. Investigation of ascospores indicated that hybridisation had taken place within the forms, demonstrating preference for recombination within forms. Possible contributions of reproductive barriers have been appraised but further investigation is required to explore the rare hybridisation between the forms.


Sexual hybridisation Pyrenophora teres Reproductive isolation Pre- and post- mating barriers Form-specific markers Inter-form hybrids 



The authors would like to thank Ryan Fowler (Department of Agriculture and Fisheries, Queensland, Australia) and Dr. Sanjiv Gupta (Murdoch University, Western Australia) for the isolates provided by them. The authors would also like to thank Dr. Adam H. Sparks (Centre for Crop Health, University of Southern Queensland) for providing the script of Australian Map in R. This project (DAQ00187) was partly funded by the Grains Research and Development Corporation, Australia.

Compliance with ethical standards

This research does not contain any research involving humans or animals.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10658_2018_1574_MOESM1_ESM.docx (28 kb)
Supplementary Table 1 (DOCX 17 kb)
10658_2018_1574_MOESM2_ESM.docx (17 kb)
Supplementary Table 2 (DOCX 28 kb)


  1. Akhavan, A., Turkington, T. K., Kebede, B., Tekauz, A., Kutcher, H. R., Kirkham, C., et al. (2015). Prevalence of mating type idiomorphs in Pyrenophora teres f. teres and P. teres f. maculata populations from the Canadian prairies. Canadian Journal of Plant Pathology, 37(1), 52–60. Scholar
  2. Bakonyi, J., & Justesen, A. F. (2007). Genetic relationship of Pyrenophora graminea, P. teres f. maculata and P. teres f. teres assessed by RAPD analysis. Journal of Phytopathology, 155(2), 76–83. Scholar
  3. Campbell, G. F., & Crous, P. W. (2003). Genetic stability of net x spot hybrid progeny of the barley pathogen Pyrenophora teres. Australasian Plant Pathology, 32(2), 283–287. Scholar
  4. Campbell, G. F., Crous, P. W., & Lucas, J. A. (1999). Pyrenophora teres f. maculata, the cause of Pyrenophora leaf spot of barley in South Africa. Mycological Research, 103(3), 257–267. Scholar
  5. Campbell, G. F., Lucas, J. A., & Crous, P. W. (2002). Evidence of recombination between net- and spot-type populations of Pyrenophora teres as determined by RAPD analysis. Mycological Research, 106(5), 602–608. Scholar
  6. Ellwood, S. R., Syme, R. A., Moffat, C. S., & Oliver, R. P. (2012). Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA. Fungal Genetics and Biology, 49(10), 825–829.CrossRefGoogle Scholar
  7. ElMor, I. (2016). Investigating the virulence of isolates produced by sexual recombination between different Pyrenophora teres isolates. Traditional Thesis, University of Southern Queensland, Australia.Google Scholar
  8. Giraud, T., Refregier, G., Le Gac, M., de Vienne, D. M., & Hood, M. E. (2008). Speciation in fungi. Fungal Genetics and Biology, 45(6), 791–802. Scholar
  9. Jackson, C. L., & Hartwell, L. H. (1990). Courtship in S. cerevisiae: Both cell types choose mating partners by responding to the strongest pheromone signal. Cell, 63(5), 1039–1051. Scholar
  10. Jalli, M. (2011). Sexual reproduction and soil tillage effects on virulence of Pyrenophora teres in Finland. Annals of Applied Biology, 158(1), 95–105. Scholar
  11. Kohn, L. M. (2005). Mechanisms of fungal speciation. Annual Review of Phytopathology, 43, 279–308. Scholar
  12. Lehmensiek, A., Bester-van der Merwe, A. E., Sutherland, M. W., Platz, G., Kriel, W. M., Potgieter, G. F., et al. (2010). Population structure of South African and Australian Pyrenophora teres isolates. Plant Pathology, 59(3), 504–515. Scholar
  13. Leisova, L., Minarikova, V., Kucera, L., & Ovesna, J. (2005). Genetic diversity of Pyrenophora teres isolates as detected by AFLP analysis. Journal of Phytopathology, 153(10), 569–578. Scholar
  14. Liu, Z., Ellwood, S. R., Oliver, R. P., & Friesen, T. L. (2011). Pyrenophora teres: profile of an increasingly damaging barley pathogen. Molecular Plant Pathology, 12(1), 1–19. Scholar
  15. Lu, S., Platz, G. J., Edwards, M. C., & Friesen, T. L. (2010). Mating type locus-specific polymerase chain reaction markers for differentiation of Pyrenophora teres f. teres and P. teres f. maculata, the causal agents of barley net blotch. Phytopathology, 100(12), 1298–1306. Scholar
  16. McDonald, W. C. (1963). Heterothallism in Pyrenophora teres. Phytopathology, 53(121), 771–773.Google Scholar
  17. McLean, M. S., Howlett, B. J., & Hollaway, G. J. (2009). Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: a review. Crop & Pasture Science, 60(4), 303–315. Scholar
  18. McLean, M. S., Keiper, F. J., & Hollaway, G. J. (2010). Genetic and pathogenic diversity in Pyrenophora teres f. maculata in barley crops of Victoria, Australia. Australasian Plant Pathology, 39(4), 319–325. Scholar
  19. McLean, M. S., Martin, A., Gupta, S., Sutherland, M. W., Hollaway, G. J., & Platz, G. J. (2014). Validation of a new spot form of net blotch differential set and evidence for hybridisation between the spot and net forms of net blotch in Australia. Australasian Plant Pathology, 43(3), 223–233. Scholar
  20. Poudel, B., Ellwood, S. R., Testa, A. C., McLean, M., Sutherland, M. W., & Martin, A. (2017). Rare Pyrenophora teres hybridization events revealed by development of sequence-specific PCR markers. Phytopathology.
  21. Rau, D., Brown, A. H. D., Brubaker, C. L., Attene, G., Balmas, V., Saba, E., et al. (2003). Population genetic structure of Pyrenophora teres Drechs. the causal agent of net blotch in Sardinian landraces of barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106(5), 947–959. Scholar
  22. Rau, D., Maier, F. J., Papa, R., Brown, A. H. D., Balmas, V., Saba, E., Schaefer, W., & Attene, G. (2005). Isolation and characterization of the mating-type locus of the barley pathogen Pyrenophora teres and frequencies of mating-type idiomorphs within and among fungal populations collected from barley landraces. Genome, 48(5), 855–869.CrossRefGoogle Scholar
  23. Rau, D., Attene, G., Brown, A. H., Nanni, L., Maier, F. J., Balmas, V., et al. (2007). Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley "net blotch" disease. Current Genetics, 51(6), 377–392. Scholar
  24. Serenius, M., Mironenko, N., & Manninen, O. (2005). Genetic variation, occurrence of mating types and different forms of Pyrenophora teres causing net blotch of barley in Finland. Mycological Research, 109(7), 809–817. Scholar
  25. Serenius, M., Manninen, O., Wallwork, H., & Williams, K. (2007). Genetic differentiation in Pyrenophora teres populations measured with AFLP markers. Mycological Research, 111(2), 213–223. Scholar
  26. Smedegård-Petersen, V. (1971). Pyrenophora teres f. maculata f. nov. and Pyrenophora teres f. teres on barley in Denmark. In Yearbook of the Royal Veterinary and Agricultural University (pp. 124-144). Copenhagen.Google Scholar
  27. Stukenbrock, E. H. (2013). Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytologist, 199(4), 895–907. Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • B. Poudel
    • 1
  • M. S. McLean
    • 2
  • G. J. Platz
    • 3
  • J. A. McIlroy
    • 3
  • M. W. Sutherland
    • 1
  • A. Martin
    • 1
    Email author
  1. 1.Centre for Crop HealthUniversity of Southern QueenslandToowoombaAustralia
  2. 2.Agriculture VictoriaHorshamAustralia
  3. 3.Department of Agriculture and Fisheries, Hermitage Research FacilityWarwickAustralia

Personalised recommendations