European Journal of Plant Pathology

, Volume 153, Issue 2, pp 417–427 | Cite as

The cereal phytopathogen Sporisorium reilianum is able to infect the non-natural host Arabidopsis thaliana

  • Domingo Martínez-SotoEmail author
  • John Martin Velez-Haro
  • Claudia Geraldine León-Ramírez
  • Roberto Ruiz-Medrano
  • Beatriz Xoconostle-Cázares
  • José Ruiz-HerreraEmail author


We analyzed the infection of the model plant Arabidopsis thaliana by the basidiomycete phytopathogen of cereals Sporisorium reilianum in order to use it as an experimental pathosystem model. Sterile plantlets of A. thaliana were grown on MS solid medium, and inoculated with haploid strains or mixtures of sexually compatible S. reilianum strains. Inoculated plants showed growth of filaments within their tissues, size reduction, a drastic increase in the formation of lateral roots, and a high production of plant pigments. Although symptoms were more severe in plants infected with sexually compatible strains, no spores were formed by the fungus. Among the pigments accumulated in the stunted plants we identified the anthocyanins cyanidin, cyanidin 3-glucoside, malvidin and pelargonidin. Congruently, the anthocyanin biosynthesis genes: chalcone synthase (CHS, AT5G13930) and dihydroflavonol reductase (DFR, AT5G42800) were over-expressed. The three genes encoding flavin monooxygenases: YUCCA7 (YUC7, AT2G33230), YUCCA8 (YUC8, AT4G28720), and YUCCA9 (YUC9, AT1G04180), and the transcription factor Jagged Lateral Organs (JLO, AT4G00220), all of them involved in the biosynthesis of auxins specific for root development, were also positively regulated. These data provide evidence that both haploid and the mixture of sexually compatible strains of S. reilianum can infect plants of A. thaliana; evidencing the usefulness of this pathosystem for the study of the genetic and metabolic reactions involved in S. reilianum virulence.


Sporisorium reillianum Arabidopsis thaliana Alternative host Pathosystem model Virulence 



This work was partially supported by Consejo Nacional de Ciencia y Tecnología (Conacyt), México. Thanks are given to Prof. Jan Schirawski, Institute of Applied Microbiology, RWTH Aachen University, Germany, for making available the S. reilianum strains SRZ2 and SRZ1. We also thank Mayela F. Salazar-Chávez from the Irapuato Unit of Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Leandro A. Núñez-Muñoz and Brenda J. Vargas-Hernández from Zacatenco Unit of Cinvestav; Renata Cruz-Calderon from Instituto Tecnológico Superior de Los Reyes, TSLR; and Drs. José I. Reyes-Olalde, and Stefan de Folter from the Unit of Advance Genomics, Cinvestav, for their assistance respectively in strain maintenance, preparation of some reagents, statistical analyses, and microscopic analyses.

Compliance with ethical standards

The authors declare that they are aware of the ethical responsibilities required by the European Journal of Plant Pathology for the submission of manuscripts. Also, they declare no conflict of interests and that they were informed of the submission of the manuscript.

Supplementary material

10658_2018_1567_MOESM1_ESM.pdf (309 kb)
ESM 1 (PDF 308 kb)
10658_2018_1567_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 13 kb)


  1. Abdel-Aal, E. S. M., & Hucl, P. (1999). A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chemistry, 76, 350–354.CrossRefGoogle Scholar
  2. Banuett, F. (1995). Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annual Review of Genetics, 29, 179–208.CrossRefGoogle Scholar
  3. Banuett, F., & Herskowitz, I. (1989). Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proceedings of the National Academy of Sciences of the United States of America, 86, 5878–5882.CrossRefGoogle Scholar
  4. Belhaj, K., Cano, L. M., Prince, D. C., Kemen, A., Yoshida, K., Dagdas, Y. F., Etherington, G. J., Schoonbeek, H. J., van Esse, H. P., Jones, J. D. G., Kamoun, S., & Schornack, S. (2017). Arabidopsis late blight: infection of a nonhost plant by Albugo laibachii enables full colonizationby Phytophthora infestans. Cellular Microbiology, 19, e12628. Scholar
  5. Bhaskaran, S., & Smith, R. H. (1993). Carbohydrates, inertase activity, growth and dimorphism in Sporisorium reilianum. Mycopathologia, 122, 35–41.CrossRefGoogle Scholar
  6. Cai, X. T., Xu, P., Zhao, P. X., Liu, R., Yu, L. H., & Xiang, C. B. (2014). Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications, 5, 5833. Scholar
  7. Davis, K. R. (1993). Arabidopsis thaliana as a model for plant-pathogen interactions. In R. Hammershmidt (Ed.), The American phytopathological society (pp. 1–134). APS Press: St. Paul.Google Scholar
  8. Doehlemann G., Ökmen B., Zhu W., & Sharon A. (2017). Plant pathogenic fungi. Microbiology Spectrum, 5.
  9. Garzón, G. A. (2008). Anthocyanins as natural colorants and bioactive compounds. A review. Acta Biológica Colombiana, 13, 27–36.Google Scholar
  10. Hoch, H. C., Galvani, C. D., Szarowski, D. H., & Turner, J. N. (2005). Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia, 97, 580–588.CrossRefGoogle Scholar
  11. Holliday, R. (1974). Ustilago maydis. In R. C. King (Ed.), The handbook of genetics (pp. 575–595). New York: Plenum Press.Google Scholar
  12. Ibraheem, F., Gaffoo, I., Tan, Q., Shyu, C. R., & Chopra, S. (2015). A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize. Molecules, 20, 2388–2404.CrossRefGoogle Scholar
  13. Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61, 1361779.CrossRefGoogle Scholar
  14. Koes, R., Verweij, W., & Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biotechemical pathways. Trends in Plant Science, 10, 236–242.CrossRefGoogle Scholar
  15. Kondo, S., Hiraoka, K., Kobayashi, S., Honda, C., & Terahara, N. (2002). Changes in the expression of anthocyanin biosynthetic genes during apple development. Journal of the American Society for Horticultural Science, 127, 971–976.CrossRefGoogle Scholar
  16. Kontoyiannis, D. P., & Lewis, R. E. (2010). Studying fungal pathogenesis in Drosophila. Microbe, 5, 291–295.Google Scholar
  17. Li, N., Wu, H., Ding, Q., Li, H., Li, Z., Ding, J., & Li, Y. (2018). The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Functional & Integrative Genomics, 18, 341–353. Scholar
  18. Martin, F., Delareulle, C., & Hilbert, J. L. (1990). An improved ergosterol assay to estimate fungal biomass in ectomycorrhizas. Mycological Research, 94, 1059–1064.CrossRefGoogle Scholar
  19. Martinez, C., Roux, C., Jauneau, A., & Dargent, R. (2002). The biological cycle of Sporisorium reilianum f. sp. zeae: an overview using microscopy. Mycologia, 94, 505–514.CrossRefGoogle Scholar
  20. Martínez-Soto, D., Robledo-Briones, A. M., Estrada-Luna, A. A., & Ruiz-Herrera, J. (2013). Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. Plant Signaling & Behavior.
  21. Martínez-Soto, D., Pérez-Garcia, F. E., & Ruiz-Herrera, J. (2016). Arabidopsis infection by haploid or diploid strains of Ustilago maydis reveals its capacity as a necrophic or biotrophic phytopathogen. Fungal Genomics and Biology.
  22. Mazaheri-Naeini, M., Sabbagh, S. K., Martinez, Y., Séjalon-Delmas, N., & Roux, C. (2015). Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biology, 119, 145–153.CrossRefGoogle Scholar
  23. Méndez-Morán, L., Reynaga-Peña, C. G., Springer, P. S., & Ruiz-Herrera, J. (2005). Ustilago maydis infection of the nonnatural host Arabidopsis thaliana. Phytopathology, 95, 480–488.CrossRefGoogle Scholar
  24. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  25. Olatunji, D., Geelen, D., & Verstraeten, I. (2017). Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences.
  26. Palomeros-Suárez, P. A., Massange-Sánchez, J. A., Sánchez-Segura, L., et al. (2017). AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis. Planta, 245, 623–640.CrossRefGoogle Scholar
  27. Perfect, J. R., Savani, D. V., & Durack, D. T. (1986). Comparison of itraconazole and fluconazole in treatment of cryptococcal meningitis and candida pyelonephritis in rabbits. Antimicrobial Agents and Chemotherapy, 29, 579–583.CrossRefGoogle Scholar
  28. Poloni, A., & Schirawski, J. (2016). Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum. Molecular Plant Pathology, 17, 741–754.CrossRefGoogle Scholar
  29. Rast-Somssich, M. I., Zádníkova, P., Schmid, S., Kieffer, M., Kepinski, S., & Simon, R. (2017). The Arabidopsis Jagged Lateral Organs (JLO) gene sensitizes plants to auxin. Journal of Experimental Botany, 68, 2741–2755.CrossRefGoogle Scholar
  30. Schirawski, J., Heinze, B., Wagenknecht, M., & Kahmann, R. (2005). Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryotic Cell, 4, 1317–1327.CrossRefGoogle Scholar
  31. Schirawski, J., Mannhaupt, G., Münch, K., et al. (2010). Pathogenicity determinants in smut fungi revealed by genome comparison. Science, 330, 1546–1548.CrossRefGoogle Scholar
  32. van der Does, H. C., & Rep, M. (2017). Adaptation to the host environment by plant-pathogenic fungi. Annual Review of Phytopathology, 55, 427–450.CrossRefGoogle Scholar
  33. Warpeha, K. M., Park, Y. D., & Williamson, P. R. (2013). Susceptibility of intact germinating Arabidopsis thaliana to human fungal pathogens Cryptococcus neoformans and C. gattii. Applied and Environmental Microbiology, 79, 2979–2988.CrossRefGoogle Scholar
  34. Weigel, D., & Glazebrook, J. (2002). Arabidopsis: A laboratory manual. New Yok: Cold Spring Harbor Laboratory Press.Google Scholar
  35. Zhao, Y. (2012). Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular Plant, 5, 334–338.CrossRefGoogle Scholar
  36. Zuther, K., Kahnt, J., Utermark, J., Imkampe, J., Uhse, S., & Schirawski, J. (2012). Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor. Molecular Plant-Microbe Interactions, 25, 1230–1237.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Domingo Martínez-Soto
    • 1
    • 2
    Email author
  • John Martin Velez-Haro
    • 2
    • 3
  • Claudia Geraldine León-Ramírez
    • 2
  • Roberto Ruiz-Medrano
    • 4
  • Beatriz Xoconostle-Cázares
    • 4
  • José Ruiz-Herrera
    • 2
    Email author
  1. 1.Ingeniería en Innovación Agrícola SustentableInstituto Tecnológico Superior de Los ReyesLos ReyesMexico
  2. 2.Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
  3. 3.Departamento de Ingeniería BioquímicaInstituto Tecnológico de CelayaCelayaMexico
  4. 4.Departamento de Biotecnología y BioingeneríaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalCDMXMexico

Personalised recommendations