European Journal of Plant Pathology

, Volume 153, Issue 2, pp 359–369 | Cite as

Prevalence and molecular diversity of the main viruses infecting cucurbit and solanaceous crops in Azerbaijan

  • Cécile Desbiez
  • Eric Verdin
  • Benoît Moury
  • Hervé Lecoq
  • Pauline Millot
  • Catherine Wipf-Scheibel
  • Samra Mirzayeva
  • Nargiz Sultanova
  • Gulnara Balakishiyeva
  • Alamdar Mammadov
  • Ahmed Kheyr-Pour
  • Irada HuseynovaEmail author


Two surveys were conducted in September 2014 and July 2015 in important vegetable-growing areas in Azerbaijan. Cucurbit and solanaceous plants exhibiting symptoms of mosaic, yellowing, leaf curl or necrosis were collected and tested serologically and molecularly for the presence of the major viruses infecting these crops. For cucurbits, the most common viruses in both sampling sets were aphid-transmitted ones, including potyviruses (watermelon mosaic virus, WMV, zucchini yellow mosaic virus, ZYMV), cucumoviruses (cucumber mosaic virus, CMV) and poleroviruses (cucurbit aphid-borne yellows virus, CABYV). Eggplant mottled dwarf (EMDV) was also detected for the first time in Azerbaijan on cucumber at a low prevalence. In solanaceous crops, CMV was the most common virus detected, followed by potato virus Y (PVY). Tomato spotted wilt virus (TSWV), alfalfa mosaic virus (AMV) and tobamoviruses (tomato mosaic virus (TMV), pepper mild mottle virus (PMMoV)) were also detected in 2015. The begomovirus tomato yellow leaf curl virus (TYLCV) was present on tomato only in the Absheron area, where it had a high prevalence and induced important losses. TYLCV-like symptoms on tomato in other areas of Azerbaijan were due to phytoplasma diseases.


Epidemiology Genetic diversity Cucurbitaceae Tomato Pepper 



This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan (EİF-2014-9(24)-KETPL-14/11/3-M-10) and by Presidium of Azerbaijan National Academy of Sciences (decision № 7/3 dated on 14.03.2018). We thank Isabelle Bornard at the Microscopy Platform of INRA-Montfavet for the electron microscope observations, the Experimental Infrastructure team in Montfavet for their help in the greenhouse experiments, and Dr. Michel Pitrat for his participation in the 2003 survey.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10658_2018_1562_Fig4_ESM.png (15.8 mb)
Supplementary Fig. S1

A, B: Severe leaf curl in a tomato field in Absheron region caused by tomato yellow leaf curl virus (TYLCV); C: virescence on tomato and D: leaf curl on pepper induced by stolbur phytoplasma in the Ganja region. (PNG 16144 kb)

10658_2018_1562_MOESM1_ESM.tiff (2.7 mb)
High resolution image (TIFF 2720 kb)
10658_2018_1562_Fig5_ESM.png (1.2 mb)
Supplementary Fig. S2

Distance tree based on a fragment of Cucumber mosaic virus (CMV) RNA-3. Isolates from the 2014–2015 surveys in Azerbaijan are boxed. The scale bar represents a genetic distance of 0.02. Bootstrap values above 70% (500 bootstraps) are indicated for each node. (PNG 1188 kb)

10658_2018_1562_MOESM2_ESM.tiff (4.4 mb)
High resolution image (TIFF 4518 kb)
10658_2018_1562_Fig6_ESM.png (2.2 mb)
Supplementary Fig. S3

Distance tree based on a fragment of the RdRp and CP coding region of cucurbit aphid-borne yellows virus (CABYV). The scale bar represents a genetic distance of 0.005. Bootstrap values above 60% (500 bootstraps) are indicated for each node. (PNG 2283 kb)

10658_2018_1562_MOESM3_ESM.tiff (5.1 mb)
High resolution image (TIFF 5198 kb)


  1. Balakishiyeva, G., Danet, J. L., Qurbanov, M., Mamedov, A., Kheyr-Pour, A., & Foissac, X. (2010). First report of phytoplasma infections in several temperate fruit trees and vegetable crops in Azerbaijan. Journal of Plant Pathology, 92, 115.Google Scholar
  2. Balakishiyeva, G., Mamedov, A., Foissac, X., Huseynova, I., & Aliyev, J. (2016). First report of grapevine ‘bois noir’ in Azerbaijan. Plant Disease, 100, 2522.CrossRefGoogle Scholar
  3. Bananej, K., Kianfar, N., Winter, S., & Menzel, W. (2014). The status of cucumber vein yellowing virus in Iran. Phytopathologia Mediterranea, 53, 269–276.Google Scholar
  4. Ben Tamarzizt, H., Montarry, J., Girardot, G., Fakhfakh, H., Tepfer, M., & Jacquemond, M. (2013). Cucumber mosaic virus populations in Tunisian pepper crops are mainly composed of virus reassortants with resistance-breaking properties. Plant Pathology, 62, 1415–1428.CrossRefGoogle Scholar
  5. Buzkan, N., Arpaci, B., Simon, V., Fakhfakh, H., & Moury, B. (2013). High prevalence of poleroviruses in field-grown pepper in Turkey and Tunisia. Archives of Virology, 158, 881–885.CrossRefGoogle Scholar
  6. Desbiez, C., & Lecoq, H. (2008). Evidence for multiple intraspecific recombinants in natural populations of watermelon mosaic virus (WMV, Potyvirus). Archives of Virology, 153, 1749–1754.CrossRefGoogle Scholar
  7. Desbiez, C., Joannon, B., Wipf-Scheibel, C., Chandeysson, C., & Lecoq, H. (2009). Emergence of new strains of watermelon mosaic virus in South-Eastern France: evidence for limited spread but rapid local population shift. Virus Research, 141, 201–208.CrossRefGoogle Scholar
  8. Desbiez, C., Millot, P., Wipf-Scheibel, C., Blancard, D., Chesneau, T., & Lecoq, H. (2016). First report of Pepo aphid-borne yellows virus in cucurbits in Tanzania and Mayotte. New Disease Reports, 33, 20.CrossRefGoogle Scholar
  9. Escriu, F., Fraile, A., & Garcia-Arenal, F. (2007). Constraints to genetic exchange support gene coadaptation in a tripartite RNA virus. PLoS Pathogens, 3, e8. Scholar
  10. Esmaeili, M., Heydarnejad, J., Massumi, H., & Varsani, A. (2015). Analysis of watermelon chlorotic stunt virus and tomato leaf curl Palampur virus mixed and pseudo-recombination infections. Virus Genes, 51, 408–416.CrossRefGoogle Scholar
  11. Farzadfar, S., Pourrahim, R., & Arafati, N. (2013). Molecular identification of cucumber mosaic virus subgroup 1B isolates in South Iran. Journal of Plant Pathology, 95, 423–428.Google Scholar
  12. Gundersen, D. E., & Lee, I. M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.Google Scholar
  13. Hanssen, I. M., & Lapidot, M. (2012). Major tomato viruses in the Mediterranean Basin. Advances in Virus Research, 84, 31–66.CrossRefGoogle Scholar
  14. Huseynova, I. M., Sultanova, N. F., Mirzoyeva, S. T., & Aliyev, J. A. (2016). Serological and molecular detection of virus infections of tomato (Solanum lycopersicum L.) plants in Azerbaijan. Reports of ANAS, 3, 73–78.Google Scholar
  15. Huseynova, I. M., Mirzayeva, S. M., Sultanova, N. F., Aliyeva, D. R., Mustafayev, N. S., & Aliyev, J. A. (2017). Virus-induced changes in photosynthetic parameters and peroxidase isoenzyme contents in tomato (Solanum lycopersicum L.) plants. Photosynthetica, 55, 1–10.CrossRefGoogle Scholar
  16. Jacquemond, M. (2012). Cucumber mosaic virus. Advance in Virus Research, 84, 439–504.CrossRefGoogle Scholar
  17. Jacquemond, M., Verdin, E., Dalmon, A., Guilbaud, L., & Gognalons, P. (2009). Serological and molecular detection of tomato chlorosis virus and tomato infectious chlorosis virus in tomato. Plant Pathology, 58, 210–220.CrossRefGoogle Scholar
  18. Keshavarz, T., Shams-Bakhsh, M., Izadpanah, K., & Malboobi, M. A. (2014). Occurrence and genome analysis of cucurbit chlorotic yellows virus in Iran. Journal of Phytopathogy, 162, 523–526.CrossRefGoogle Scholar
  19. Knierim, D., Deng, T. C., Tsai, W. S., Green, S. K., & Kenyon, L. (2010). Molecular identification of three distinct Polerovirus species and a recombinant cucurbit aphid-borne yellows virus strain infecting cucurbit crops in Taiwan. Plant Pathology, 59, 991–1002.CrossRefGoogle Scholar
  20. Knierim, D., Tsai, W. S., Maiss, E., & Kenyon, L. (2014). Molecular diversity of poleroviruses infecting cucurbit crops in four countries reveals the presence of members of six distinct species. Archives of Virology, 159, 1459–1465.CrossRefGoogle Scholar
  21. Lecoq, H., & Desbiez, C. (2012). Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture. Advances in Virus Research, 84, 67–126.CrossRefGoogle Scholar
  22. Lecoq, H., Wisler, G., & Pitrat, M. (1998). Cucurbit viruses: The classics and the emerging. In J. D. McCreight (Ed.), Cucurbitaceae '98. Evaluation and enhancement of cucurbit germplasm (pp. 126–142). Alexandria: ASHS Press.Google Scholar
  23. Lecoq, H., Wipf-Scheibel, C., Chandeysson, C., Le Van, A., Fabre, F., & Desbiez, C. (2009). Molecular epidemiology of zucchini yellow mosaic virus in France: an historical overview. Virus Research, 141, 190–200.CrossRefGoogle Scholar
  24. Lotos, L., Maliogka, V. I., & Katis, N. I. (2016). New poleroviruses associated with yellowing symptoms in different vegetable crops in Greece. Archives of Virology, 161, 431–436.CrossRefGoogle Scholar
  25. Mohammed, H. S., Zicca, S., Manglli, A., Mohamed, M. E., El Siddig, M. A., Tomassoli, L., & El Hussein, A. A. (2014). Identification and phylogenetic analysis of common pumpkin viruses in Sudan. Journal of Plant Pathology, 96, 77–84.Google Scholar
  26. Moury, B., & Verdin, E. (2012). Viruses of pepper crops in the Mediterranean Basin: a remarkable stasis. Advances in Virus Research, 84, 127–162.CrossRefGoogle Scholar
  27. Nematollahi, S., Bashir, N. S., Rakhshandehroo, F., & Zamanizadeh, H. R. (2012). Phylogenetic analysis of new isolates of cucumber mosaic virus from Iran on the basis of different genomic regions. Plant Pathology Journal, 28, 381–389.CrossRefGoogle Scholar
  28. Ohshima, K., Matsumoto, K., Yasaka, R., Nishiyama, M., Soejima, K., Korkmaz, S., Ho, S. Y. W., Gibbs, A. J., & Takeshita, M. (2016). Temporal analysis of reassortment and molecular evolution of cucumber mosaic virus: Extra clues from its segmented genome. Virology, 487, 188–197.CrossRefGoogle Scholar
  29. Sadikhova, L. (2005). Research and development of the vegetable system in azerbaijan. In: Increasing Market –oriented vegetable production in Central Asia and the Caucasus through collaborative research and development. Workshop Proceedings, 25-27 April 2005, Tashkent, Uzbekistan. AVRDC – The World Vegetable Center, Shanhua, Taiwan, p.29–36.Google Scholar
  30. Sharifi, M., Massumi, H., Heydarnejad, J., Hosseini Pour, A., Shaabanian, M., & Rahimian, H. (2008). Analysis of the biological and molecular variability of Watermelon mosaic virus isolates from Iran. Virus Genes, 37, 304–313.CrossRefGoogle Scholar
  31. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  32. Verdin, E., Desbiez, C., Wipf-Scheibel, C., Gognalons, P., Kheyr-Pour, A., Gronenborn, B., Mirzayeva, S., Sultanova, N., Mammadov, A., & Huseynova, I. (2018). First report of tomato yellow leaf curl virus infecting tomato in Azerbaijan. Journal of Plant Pathology, 100, 335. Scholar
  33. Wyatt, S. D., & Brown, J. K. (1996). Detection of subgroup III geminiviruses isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology, 86, 1288–1293.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Cécile Desbiez
    • 1
  • Eric Verdin
    • 1
  • Benoît Moury
    • 1
  • Hervé Lecoq
    • 1
  • Pauline Millot
    • 1
  • Catherine Wipf-Scheibel
    • 1
  • Samra Mirzayeva
    • 2
  • Nargiz Sultanova
    • 2
  • Gulnara Balakishiyeva
    • 2
  • Alamdar Mammadov
    • 2
  • Ahmed Kheyr-Pour
    • 3
  • Irada Huseynova
    • 2
    Email author
  1. 1.INRA, UR407Unité de Pathologie VégétaleMontfavetFrance
  2. 2.Azerbaijan National Academy of SciencesInstitute of Molecular Biology and BiotechnologyBakuAzerbaijan
  3. 3.Institut des Sciences du VégétalCNRSGif sur YvetteFrance

Personalised recommendations