European Journal of Plant Pathology

, Volume 153, Issue 2, pp 341–357 | Cite as

Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern hemisphere

  • Willem A. Man in ’t VeldEmail author
  • Karin C. H. M. Rosendahl
  • Patricia C. J. van Rijswick
  • Johan P. Meffert
  • Edu Boer
  • Marcel Westenberg
  • Tjisse van der Heide
  • Laura L. Govers


A plethora of oomycetes was isolated mostly from Zostera marina but also from other halophilic plants originating from several locations including the Wadden Sea, Limfjord (Denmark), the Dutch Delta area (the Netherlands), Thau lagoon (France), Lindholmen (Sweden) and Chesapeake Bay (Virginia, U.S.). Based on ITS sequences, seven different groups could be distinguished. The largest group was assigned to Phytophthora gemini (Germany, Sweden, the Netherlands, U.S.). The CoxI sequences of all P. gemini strains were identical indicating that P. gemini is probably an invasive species in the Wadden Sea. A second group was identified as P. inundata (the Netherlands, Denmark), that was also isolated from the halophilic plants Aster tripolium and Salicornia europaea. Four strains, originating from Chesapeake Bay clustered in a monophyletic clade with high bootstrap support at the ITS as well as the CoxI loci. They are phylogenetically closely related to P. gemini and are considered to represent a new species described here as Phytophthora chesapeakensis sp. nov. In addition, Salisapilea sapeloensis was isolated from Zostera noltii. Eleven other strains belonging to three unidentified taxa, originating from the Wadden Sea, the Dutch Delta area and Thau lagoon, clustered each in a monophyletic clade with high bootstrap support at the ITS locus, including Halophytophthora vesicula, the type species of the genus Halophytophthora. Hence, these strains were considered to belong to the Halophytophthora sensu stricto group and probably represent three new Halophytophthora species, informally designated here as Halophytophthora sp-1, Halophytophthora sp-3 and Halophytophthora sp-4 sensu Nigrelli and Thines. Halophytophthora sp-2 was not detected in this study. In addition, P. gemini and Halophytophthora sp-3 were obtained by baiting from locations in the Wadden Sea and Halophytophthora sp-1 was obtained by baiting from the Delta area.


Cytochrome oxidaseI Invasive species ITS Marine oomycete species New species Phylogeny 



The authors thank Mike Coffey (US) for sequencing Halophytophthora sp-4 and Robert Orth (US), Eduardo Infantes, Per-Olav Moksnes, Louise Eriander (Sweden), Birgit Olesen, Flemming Gertz (Denmark), Matthijs van de Geest (France), Dick de Jong (The Netherlands) for their generous gift of Z. marina seeds and the Fieldwork Company (Jannes Heusinkveld, Remco de Nooij) for installation and collection of baits from the Dutch Wadden Sea area.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Anastasiou, C. J., & Churchland, L. M. (1969). Fungi on decaying leaves in marine habitats. Canadian Journal of Botany, 47, 251–257.CrossRefGoogle Scholar
  2. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.CrossRefGoogle Scholar
  3. Brasier, C. M., Sanchez-Hernandez, E., & Kirk, S. A. (2003a). Phytophthora inundata sp. nov., a part heterothallic pathogen of trees and shrubs in wet or flooded soils. Mycological Research, 107, 477–484.CrossRefGoogle Scholar
  4. Brasier, C. M., Cooke, D. E., Duncan, J. M., & Hansen, E. M. (2003b). Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycological Research, 107, 277–290.CrossRefGoogle Scholar
  5. Burgess, T. I., Simamora, A. V., White, D., Wiliams, B., Schwager, M., Stukely, M. J. C., & Hardy, G. E. S. J. (2018). New species from Phytophthora clade 6a: evidence for recent radiation. Persoonia, 41, 1–17.CrossRefGoogle Scholar
  6. Crous, P. W., Verkley, J. Z., Groenwald, J. Z., Samson, R. A. (2009). Fungal biodiversity. CBS laboratory manual series. Utrecht, the Netherlands: CBS-KNAW fungal biodiversity Centre. 221 p.Google Scholar
  7. Den Hartog, C. (1987). “Wasting disease” and other dynamic phenomena in Zostera beds. Aquatic Botany, 27(1), 3–14.CrossRefGoogle Scholar
  8. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefGoogle Scholar
  9. Govers, L. L., Man in ’t Veld, W. A., Meffert, J. P., Bouma, T. J., van Rijswick, P. C. J., Heusinkveld, J. H. T., Orth, R. J., van Katwijk, M. M., & van der Heide, T. (2016). Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems. Proceedings of the Royal Society B, 283(1837), 20160812. Scholar
  10. Govers, L. L., van der Zee, E. M., Meffert, J. P., van Rijswick, P. C., Man in ’t Veld, W. A., Heusinkveld, J. H., van der Heide T. (2017). Copper treatment during storage reduces Phytophthora and Halophytophthora infection of Zostera marina seeds used for restoration. Scientific Reports, 43172.
  11. Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K., & Prospero, S. (2012). Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends in Microbiology, 20(3), 131–138.CrossRefGoogle Scholar
  12. Hüberli, D., Hardy, G. E. S. J., White, D., Williams, N., & Burges, T. I. (2013). Fishing for Phytophthora from Western Australia’s waterways: a distribution and diversity survey. Australasian Plant Patholology, 42, 251–260.CrossRefGoogle Scholar
  13. Hulvey, J., Telle, S., Nigrelli, L., Lamour, K., & Thines, M. (2010). Salisapiliaceae−a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia, 25, 109–116.CrossRefGoogle Scholar
  14. Kroon, L. P. N. M., Bakker, F. T., van den Bosch, G. B., Bonants, P. J. M., & Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41, 766–782.CrossRefGoogle Scholar
  15. Lara, E., & Belbahri, L. (2011). SSU rRNA reveals major trends in oomycete evolution. Fungal Diversity, 49, 93e100.CrossRefGoogle Scholar
  16. Leano, E. M., Vrijmoed, L. L. P., & Jones, E. B. G. (1998). Physiological studies on Halophytophthora vesicula (Straminipilous fungi) isolated from fallen mangrove leaves from Mai Po, Hong Kong. Botanica Marina, 41, 411–420.CrossRefGoogle Scholar
  17. Man in ’t Veld, W. A., Rosendahl, K. C., Brouwer, H., & de Cock, A. W. A. M. (2011). Phytophthora gemini sp. nov., a new species isolated from the halophilic plant Zostera marina in the Netherlands. Fungal Biology, 115, 724–732.CrossRefGoogle Scholar
  18. Marano, A. V., Jesus, A. L., de Souza, J. I., Jerônimo, G. H., Gonçalves, D. R., Boro, M. C., Rocha, S. C. O., & Pires-Zottarelli, C. L. A. (2016). Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural environments. Fungal Ecology, 19, 77–88.CrossRefGoogle Scholar
  19. Mayr, E. (1942). Systematics and the origin of species. New York: Colombia Univ. Press 340 p.Google Scholar
  20. Muehlstein, L. K., Porter, D., & Short, F. T. (1991). Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia, 83, 180–191.CrossRefGoogle Scholar
  21. Newell, S. Y., Miller, I. D., & Fell, I. W. (1987). Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus. Applied and Environmental Microbiology, 53, 2464–2469.Google Scholar
  22. Nigrelli, L., & Thines, M. (2013). Tropical oomycetes in the German bight – Climate warming or overlooked diversity? Fungal Ecology, 6(2), 152–160.CrossRefGoogle Scholar
  23. Orth, R. J., & Moore, K. A. (1983). Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation. Science, 222, 51–53.CrossRefGoogle Scholar
  24. Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck Jr., K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., & Williams, S. L. (2006). A global crisis for seagrass ecosystems. BioScience, 56, 987–996.CrossRefGoogle Scholar
  25. Safaiefarahani, B., Mostowfizadeh-Ghalamfarsa, R., & Cooke, D. E. L. (2013). Characterisation of Phytophthora inundata according to host range,morphological variation and multigene molecular phylogeny. Phytopathologia Mediterranea, 52(1), 46–65.Google Scholar
  26. Sullivan, B. K., Sherman, T. D., Damare, V. S., Lilje, O., & Gleason, F. H. (2013). Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecology, 6, 328–338.CrossRefGoogle Scholar
  27. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.Google Scholar
  28. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefGoogle Scholar
  29. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols, a guide to methods and applications (pp. 315–322). San Diego: Academic Press.Google Scholar
  30. Yang, X., & Hong, C. (2014). Halophytophthora fluviatilis sp. nov. from freshwater in Virginia. FEMS Microbiology Letters, 352(2), 230–237.CrossRefGoogle Scholar
  31. Zaiko, A., Martinez, J. L., Schmidt-Petersen, J., Ribicic, D., Samuiloviene, A., & Garcia-Vazquez, E. (2015). Metabarcoding approach for the ballast water surveillance--an advantageous solution or an awkward challenge? Marine Pollution Bulletin, 92, 25–34.CrossRefGoogle Scholar
  32. Zeng, H. C., Ho, H. H., & Zheng, F. C. (2009). A survey of Phytophthora species on Hainan Island of South China. Journal of Phytopathology, 157, 33–39.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Willem A. Man in ’t Veld
    • 1
    Email author
  • Karin C. H. M. Rosendahl
    • 1
  • Patricia C. J. van Rijswick
    • 1
  • Johan P. Meffert
    • 1
  • Edu Boer
    • 1
  • Marcel Westenberg
    • 1
  • Tjisse van der Heide
    • 2
  • Laura L. Govers
    • 2
    • 3
  1. 1.Dutch National Plant Protection OrganizationNational Reference CentreWageningenNetherlands
  2. 2.Department of Aquatic Ecology and Environmental Biology Institute for Water and Wetland Research (IWWR)Radboud UniversityNijmegenNetherlands
  3. 3.Conservation Ecology Group, Groningen Institute for Evolutionaire Life Sciences (GELIFES)University of GroningenGroningenNetherlands

Personalised recommendations