Skip to main content

Advertisement

Log in

Effect of natural and synthetic Brassinosteroids on strawberry immune response against Colletotrichum acutatum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are steroidal essential compounds for plant growth and development. It was shown that the exogenous applications of BRs induce protection against different pathogens and can give plants tolerance/resistance to different abiotic stresses. The aim of this work was to evaluate the protective effect against the fungal pathogen Colletotrichum acutatum, the causal agent of anthracnose disease, on strawberry plants treated with 24-epibrasinolide (EP24) and a formulation based on a brassinosteroid spirostanic analogue DI-31 (BB16). Treatment with both compounds induced a defense response in strawberry plants of the cv. Pájaro against avirulent isolate (M11) of C. acutatum, being more effective at the lower concentration of both steroids (0.1 mg l−1), although the analogue BB16 showed a stronger effect than EP24. The evaluation of biochemical defense markers showed that strawberry plants treated with EP24 and BB16 increased the production of H2O2, O2.-, NO, calcium oxalate crystals and higher callose and lignin deposition as compared to the control plants. However, stomatal closure was only observed in plants treated with BB16. These results suggests that BB16 and EP24 can be used for the activation of innate immunity in strawberry plants, as a new strategy for crop health protection management, alternative to agrochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BB16:

Biobras-16

BRs:

Brassinosteroids

DAB:

3,3-diaminobenzidine

DAF-FM-DA:

4-amino-5-methylamino-2´,7´-difluorofluorescein diacetate

DSR:

Disease Severity Ratings

EBL:

24-epibrassinolide

EP24:

24-epibrasinolide

ET:

Ethylene

H2DCF-DA:

2',7'-dichlorodihydrofluorescein diacetate

IR:

Induced resistance

JA:

Jasmonic acid

MES:

2-(N-morpholino) ethanesulfonic acid

NBT:

Nitro blue tetrazolium

PDA:

Potato dextrose agar

ROS:

Reactive oxygen species

SA:

Salicylic Acid

References

  • Adaskaveg, J. E., & Hartin, R. J. (1997). Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology, 87, 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Agurla, S., Gayatri, G., & Raghavendra, A. S. (2014). Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide, 43, 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The strawberry plant defense mechanism: A molecular review. Plant and Cell Physiology, 52, 1873–1903.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Baudouin, E. (2011). The language of nitric oxide signaling. Plant Biology, 13, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.

    Article  CAS  PubMed  Google Scholar 

  • Canales, E., Coll, Y., Hernández, I., Portieles, R., Rodríguez García, M., López, Y., et al. (2016). ‘Candidatus Liberibacter asiaticus,’ causal agent of citrus huanglongbing, is reduced by treatment with brassinosteroids. PLoS One, 11, e0146223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalfoun, N. R., Grellet-Bournonville, C. F., Martínez Zamora, M. G., Díaz-Perales, A., Castagnaro, A. P., & Díaz Ricci, J. C. (2013). Purification and characterization of AsES: A subtilisin secreted by Acremonium strictum is a novel plant defence elicitor. Journal of Biological Chemistry, 288, 14098–14113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, Y.-E., Harada, E., Wada, M., Tsuboi, H., Morita, Y., Kusano, T., & Sano, H. (2001). Detoxification of cadmium in tobacco plants: Formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta, 213, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Coll, Y. (2015). Determinación del papel del brasinoesteroide 24-epibrasinólida en la respuesta defensiva de Citrus x aurantifolia (Christm) “Swingle” frente a la infección con “Candidatus Liberibacterasiaticus”. Tesis en opción al grado científico de Doctor en Ciencias Biológicas. Universidad de la Habana, La Habana, Cuba.

  • Coll, M.F., Jomarrón, R.I.M., Robaina, R.C.M., Alonso, B.E.M. & Cabrera, P.M.T. (1995). Polyhydroxyspirostanones as Plant Growth Regulators. PCT Int. Appl. CO 7J 71.100, AOIN 45.00 WO 97.13780.

  • D’Ambrogio de Argüeso, A. (1986). Manual de técnicas de histología vegetal. Editora Hemisferio Sur, Buenos Aires, 83 pp.

  • Delp, B. R., & Milholland, R. D. (1980). Evaluating strawberry plants for resistance to Colletotrichum fragariae. PlantDisease, 64, 1071–1073.

    Google Scholar 

  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2013). InfoStat version 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

  • Ding, J., Shi, K., & Zhou, Y. H. (2009). Effects of root and foliar applications of 24-epibrassinolide on Fusarium wilt and antioxidant metabolism in cucumber roots. Hortscience, 44, 1340–1345.

    Article  Google Scholar 

  • Doke, N. (1983). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology, 23, 359–367.

    Article  CAS  Google Scholar 

  • Franceschi, V. (2001). Calcium oxalate in plants. Trends in Plant Science, 6, 331.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, V. R., & Horner, H. T. (1980). Calcium oxalate crystals in plants. Botanical Review, 46, 361–427.

    Article  CAS  Google Scholar 

  • Franceschi, V. R., & Schueren, A. M. (1986). Incorporation of strontium into plant calcium oxalate crystals. Protoplasma, 130, 199–205.

    Article  CAS  Google Scholar 

  • Freeman, S., & Katan, T. (1997). Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology, 87, 516–521.

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa, Y., Nakanishi, T., Kawakami, H., Yamasaki, K., Sato, M. H., Tsuji, H., et al. (2014). Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format. Rice, 7, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F. M., De Lorenzo, G., & Ferrari, S. (2008). The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiology, 148, 1695–1706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., et al. (2006). Early signaling events induced by elicitors of plant defences. Molecular Plant-Microbe Interactions, 19, 711–724.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., & Blatt, M. R. (2003). Nitric oxide regulates K+ and cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences, USA, 100, 11116–11121.

    Article  CAS  Google Scholar 

  • Gaupels, F., Kuruthukulangarakoola, G. T., & Durner, J. (2011). Upstream and downstream signals of nitric oxide in pathogen defense. Current Opinion in Plant Biology, 14, 707–714.

    Article  CAS  PubMed  Google Scholar 

  • Gendron, J. M., Liu, J., Fan, M., Bai, M., Wenkel, S., & Springer, P. S. (2012). Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings of the National Academy of Sciences. USA, 109, 21152–21157.

    Article  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N. B., Worley, J. F., Warthen, J. D., et al. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassicanapu spollen. Nature, 281, 216–217.

    Article  CAS  Google Scholar 

  • Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901–908.

    Article  CAS  PubMed  Google Scholar 

  • Howard, C. M., Maas, J. L., Chandler, C. K., & Albregts, E. E. (1992). Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Disease, 76, 976–981.

    Article  Google Scholar 

  • Kirschbaum, D. S., & Hancock, J. F. (2000). The strawberry industry in South America. HortScience, 35, 807–811.

    Article  Google Scholar 

  • Kirschbaum, D. S., Vicente, C. E., Cano-Torres, M. A., Gambardella-Casanova, M., Veizaga-Pinto, F. K., & Correa-Antunes, L. E. (2016). Strawberry in South America: From the Caribbean to Patagonia. Acta Horticulturae, 1156, 947–956.

    Google Scholar 

  • Kwak, J. M., Nguyen, V., & Schroeder, J. I. (2006). The role of reactive oxygen species in hormonal responses. Plant Physiology, 141, 323–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamattina, L., Garcia-Mata, C., Graziano, M., & Pagnussat, G. (2003). Nitric oxide: The versatility of an extensive signal molecule. Annual Review of Plant Biology, 54, 109–136.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Ma, H., Jia, P., Wang, J., Jia, L., Zhang, T., et al. (2012). Responses of seedling growth and antioxidant activity to excess iron and copper in Triticuma estivum L. Ecotoxicology and Environmental Safety, 86, 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F. W. (1959). Staining and observing pollen tubes in the style by means of fluorescence. Stain Technology, 34, 125–128.

    Article  CAS  PubMed  Google Scholar 

  • Mazorra, L. M., Núñez, M., Hechavarria, M., Coll, F., & Sánchez-Blanco, M. J. (2002). Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum, 45, 593–596.

    Article  CAS  Google Scholar 

  • Mazorra, L. B., Núñez, M., Nápoles, M. C., Yoshida, S., Robaina, C., Coll, F., & Asami, T. (2004). Effects of structural analogs of brassinosteroids on the recovery of growth inhibition by a specific brassinosteroid biosynthesis inhibitor. Plant Growth Regulation, 44, 183–185.

    CAS  Google Scholar 

  • Melotto, M., Panchal, S., & Roy, D. (2014). Plant innate immunity against human bacterial pathogens. Frontiers in Microbiology, 5, 411.

    Article  PubMed  PubMed Central  Google Scholar 

  • Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D., & Ausubel, F. M. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell, 22, 973–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, J. W., Mandava, N. B., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins: A new family of plant hormones from rape pollen. Nature, 225, 1065–1066.

    Article  CAS  PubMed  Google Scholar 

  • Nahar, K., Kyndt, T., Hause, B., Höfte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115.

    Article  CAS  PubMed  Google Scholar 

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., et al. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Nam, K. H., & Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110, 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z., & Yu, J. Q. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 36, 789–803.

    Article  CAS  Google Scholar 

  • Nuñez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.

    Article  Google Scholar 

  • Planchet, E., & Kaiser, W. M. (2006). Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: A comparison using abiotic and biotic NO sources. Journal of Experimental Botany, 57, 3043–3055.

    Article  CAS  PubMed  Google Scholar 

  • Ramulu, K. F., Dijkhuis, P., Rutgers, E., Blaas, J., Verbeek, V. H. J., Verhoeven, H. A., & ColinjHooymans, C. M. (1995). Microprotoplast fusion technique a new tool for gene transfer between sexually-incongruent plant species. Euphytica, 85, 255–268.

    Article  Google Scholar 

  • Roth, U., Friebe, A., & Schnabl, H. (2000). Resistance induction in plants by a brassinosteroidcontaining extract of Lychnisviscaria L. Zeitschrift für Naturforschung, 55, 552–559.

    Article  CAS  Google Scholar 

  • Salazar, S. M., Castagnaro, A. P., Arias, M. E., Chalfoun, N., Tonello, U., & Díaz Ricci, J. C. (2007). Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. European Journal of Plant Pathology, 117, 109–122.

    Article  Google Scholar 

  • Serna, M., Hernández, F., Coll, F., & Amorós, A. (2012). Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Scientia Horticulturae, 143, 29–37.

    Article  CAS  Google Scholar 

  • Simontacchi, M., Garcia-Mata, C., Bartoli, C. G., Santa-Maria, G. E., & Lamattina, L. (2013). Nitric oxide as a key component in hormone-regulated processes. Plant Cell Reports, 32, 853–866.

    Article  CAS  PubMed  Google Scholar 

  • Smith, B. J., & Black, L. L. (1990). Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Disease, 74, 69–76.

    Article  Google Scholar 

  • Thakur, M., & Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochemistry, 2013, 1–10.

    Article  CAS  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants.H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11, 1187–1194.

    Article  CAS  Google Scholar 

  • Tortora, M. L., Díaz-Ricci, J. C., & Pedraza, R. O. (2012). Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant and Soil, 356, 279–290.

    Article  CAS  Google Scholar 

  • Trapet, P., Kulik, K., Lamotte, O., Jeandroz, S., Bourque, S., Nicolas-Francès, V., et al. (2014). NO signaling in plant immunity: A tale of messengers. Phytochemistry, 112, 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Vance, C. P., Kirk, T. K., & Sherwood, R. T. (1980). Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18, 259–288.

    Article  CAS  Google Scholar 

  • Vasyukova, N. J., Chalenko, G. I., Kaneva, I. M., Khripach, V. A., & Ozeretskovskaya, O. L. (1994). Brassinosteroids and potato late blight. Applied Biochemistry and Microbiology, 30, 464–470.

    CAS  Google Scholar 

  • Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S., & Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410, 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., et al. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. J., Zhou, Y. H., Ding, J., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2011). Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytologist, 191, 706–720.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, C. L., Mackenzie, S. J., & Legard, D. E. (2004). Genetic and pathogenic analyses of Colletotrichum gloeosporioides isolates from strawberry and noncultivated hosts. Phytopathology, 94, 446–453.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y.-Y., Jung, J.-Y., Song, W.-Y., Suh, H.-S., & Lee, Y. (2000). Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism tolerance. Plant Physiology, 124, 1019–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, W., Hossain, M. A., Munemasa, S., Nakamura, Y., Mori, I. C., & Murata, Y. (2013). Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells. Journal of Plant Physiology, 170, 1212–1215.

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka, H., Mase, K., Yoshioka, M., Kobayashi, M., & Asai, S. (2011). Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide, 25, 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, W., Melotto, M., & He, S. Y. (2010). Plant stomata: A check point of host immunity and pathogen virulence. Current Opinion in Biotechnology, 21, 599–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeyen, R. J., Carver, T. L. W., & Lyngkjaer, M. F. (2002). Epidermal cell papillae. In The powdery mildew: A comprehensive treatise (Belanger RR, Bushnell WR, Dik AJ, Carver TLW). St. Paul, MN (pp. 107–125). The American Phytopathological Society.

  • Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.

    Article  CAS  PubMed  Google Scholar 

  • Zindler-Frank, E. (1991). Calcium oxalate crystal formation and growth in two legume species as altered by strontium. Botanica Acta, 104, 229–232.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was partially supported with grants of the Universidad Nacional de Tucumán (CIUNT 26/D544), and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-2075). Authors are grateful to Strawberry Active Germplasm Bank (BGA) from Universidad Nacional de Tucumán (UNT) and Ing. Cecilia Lemme for providing strawberry plants. RNF and GGM are CONICET fellowship, and MGMZ and JCDR is member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Díaz Ricci.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The manuscript has not been published and is not under consideration for publication elsewhere. All authors have approved the manuscript and agree with submission to European Journal of Plant Pathology. The research was conducted in the absence of any commercial relationships that could be considered as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furio, R.N., Albornoz, P.L., Coll, Y. et al. Effect of natural and synthetic Brassinosteroids on strawberry immune response against Colletotrichum acutatum. Eur J Plant Pathol 153, 167–181 (2019). https://doi.org/10.1007/s10658-018-1551-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1551-3

Keywords

Navigation