Skip to main content
Log in

Endophytes of Lippia citriodora (Syn. Aloysia triphylla) enhance its growth and antioxidant activity

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Endophytes of medicinal plants are valuable resources for plant growth promotion and lead drug discovery. Lemon verbena, Lippia citriodora Kunth. (Verbenaceae), is an ethnomedicinal shrub. Here, the endophytic bacterium Sphingomonas paucimobilis and the endophytic fungus Aspergillus sp. isolated from L. citriodora were used for plant interaction studies. Foliar spraying and soil drenching methods of endophyte’s inocula application were used for in planta assays. The results showed that both fungal and bacterial endophytes increased the growth parameters of L. citriodora including plant height, leaf number, fresh weight and dry weight of shoot, root and leaf. Indeed, soil drenching of S. paucimobilis increased the root weight, but its foliar spray increased the plant height. Also, soil drenching of Aspergillus sp. increased the leaves dry weight, while its foliar spray increased the number of branches, leaves, and the leaves fresh weight. Soil drenching of either of both endophytes increased the antioxidant activity of L. citriodora’s foliage, but foliar sprays yielded lower increases. Endophytes had no apparent effects on the phenolics and flavonoids at the time of sampling, i.e. 30 days post-inoculation. Our findings indicate the enhancing effects of endophyte application on the growth and antioxidant property of L. citriodora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abderrahim, F., Estrella, S., Susin, C., Arribas, S. M., Gonzalez, M. C., & Condezo-Hoyos, L. (2011). The antioxidant activity and thermal stability of lemon verbena (Aloysia triphylla) infusion. Journal of Medicinal Food, 14, 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Agarwhal, S., & Shende, S. T. (1987). Tetrazolium reducing microorganisms inside the root of Brassica species. Current Science, 56, 187–188.

    Google Scholar 

  • Argyropoulou, C., Daferera, D., Tarantilis, P. A., Fasseas, C., & Polissiou, M. (2007). Chemical composition of the essential oil from leaves of Lippia citriodora H.B.K. (Verbenaceae) at two developmental stages. Biochemical Systematics and Ecology, 35, 831–837.

    Article  CAS  Google Scholar 

  • Aswathy, A. J., Jasim, B., Jyothis, M., & Radhakrishnan, E. K. (2013). Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. Biotech, 3, 219–224.

    Google Scholar 

  • Bacon, C. W., & White, J. F. (2000). Microbial endophytes (pp. 341–388). New York: Marcel Dekker.

    Google Scholar 

  • Bagheri, A. A., Saadatmand, N. V., Nejadsatari, T., & Babaeizad, V. (2013). Effect of endophytic fungus, Piriformospora S. indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. International Journal of Advanced Biological and Biomedical Research, 1, 1337–1350.

    CAS  Google Scholar 

  • Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., et al. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. The New Phytologist, 180, 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Bangou, M. J., Méda, N. T. R., Thiombiano, A. M. E., Kiendrebéogo, M., & Zeba, B. (2012). Antioxidant and antibacterial activities of five Verbenaceae species from Burkina Faso. Current Research Journal of Biological Sciences, 4, 665–672.

    Google Scholar 

  • Brader, G., Compant, S., Mitter, B., Trognitz, F., & Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 27, 30–37.

  • Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.

    CAS  Google Scholar 

  • Chen, L., Xu, M., Zheng, Y., Men, Y., Sheng, J., & Shen, L. (2014). Growth promotion and induction of antioxidant system of tomato seedlings (Solanum lycopersicum L.) by endophyte TPs-04 under low night temperature. Scientia Horticulturae, 176, 143–150.

    Article  CAS  Google Scholar 

  • da Silva, T. F., Vollu, R. E., Jurelevicius, D., Alviano, D. S., Alviano, C. S., Blank, A. F., & Seldin, L. (2013). Does the essential oil of Lippia sidoides Cham. (pepper-rosmarin) affect its endophytic microbial community? BMC Microbiology, 13, 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Siqueira, V., Conti, R., Magali de Araújo, J., & Souza-Motta, C. M. (2011). Endophytic fungi from the medicinal plant Lippia sidoides Cham. And their antimicrobial activity. Symbiosis, 53, 89–95.

    Article  CAS  Google Scholar 

  • Duarte, M. C. T., Figueira G. M., Sartoratto A., et al. (2005). Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology, 97, 305–311.

    Article  PubMed  Google Scholar 

  • Ernst, M., Mendgen, K. W., & Wirsel, S. G. R. (2003). Endophytic fungal mutualists: Seed-borne spp. enhance reed biomass production in axenic microcosms. Molecular Plant-Microbe Interactions, 16, 580–587.

  • Funes, L., Fernández-Arroyo, S., Laporta, O., Pons, A., Roche, E., & Segura-Carretero, A. (2009). Correlation between plasma antioxidant capacity and verbascoside levels. Food Chemistry, 117, 589–598.

    Article  CAS  Google Scholar 

  • Gagné, S., Richard, C., Rouseau, H., & Antoun, H. (1987). Xylem-residing bacteria in alfalfa roots. Canadian Journal of Microbiology, 33, 996–1000.

    Article  Google Scholar 

  • Glick, B. R. (2015). Beneficial plant-bacterial interactions. Heidelberg: Springer.

    Book  Google Scholar 

  • Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895–914.

  • Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Doring, M., & Sessitsch, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293–320.

    Article  PubMed  Google Scholar 

  • Hoffman, M. T., Gunatilaka, M., Wijeratne, E. M. K., Gunatilaka, A. A. L., & Arnold, A. E. (2013). Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One, 8, e73132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hol, W. H. G., de la Peña, E., Moens, M., & Cook, R. (2007). Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic and Applied Ecology, 8, 500–509.

  • Hosseyni Moghaddam, M. S., & Soltani, J. (2014a). Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Annales de Microbiologie, 64, 753–761.

    Article  CAS  Google Scholar 

  • Hosseyni Moghaddam, M. S., & Soltani, J. (2014b). Psychrophilic endophytic fungi with bioactivity inhabit Cupressaceae plant family. Symbiosis, 63, 79–86.

    Article  Google Scholar 

  • Hosseyni Moghaddam, M. S., Soltani, J., Babalhavaeji, F., Hamzei, J., Nazeri, S., & Mirzaei, S. (2013). Bioactivities of endophytic Penicillia from Cupressaceae. Journal of Crop Protection, 2, 421–433.

    Google Scholar 

  • James, E. K., Gyaneshwar, P., Mathan, N., Barraquio, Q. L., Reddy, P. M., Iannetta, P. P. M., Olivares, F. L., & Ladha, J. K. (2002). Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions, 15, 894–906.

    Article  CAS  PubMed  Google Scholar 

  • Janarthine, S. R., & Eganathan, P. (2012). Plant growth promoting of endophytic Sporosarcina aquimarina SjAM16103 isolated from the pneumatophores of Avicennia marina L. International Journal of Microbiology, 1–10.

  • Khani, A., Basavand, F., & Rakhshani, E. (2012). Chemical composition and insecticide activity of lemon verbena essential oil. Journal of Crop Protection, 1, 313–320.

    Google Scholar 

  • Kim, S., Lowman, S., Hou, G., Nowak, J., Flinn, B., & Mei, C. (2012). Growth promotion and colonization of switchgrass Panicum virgatum cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnology for Biofuels, 5, 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, S., Xu, T., Chen, L., Chen, J., Rao, C., Xiao, X., Wan, Y., Zeng, G., Long, F., Liu, C., & Liu, Y. (2012). Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology, 93, 1745–1753.

    Article  CAS  PubMed  Google Scholar 

  • Marks, S., & Clay, K. (1990). Effects of CO2 enrichment, nutrient addition and fungal endophyte infection on the growth of two grasses. Oecologia, 84, 207–214.

    Article  PubMed  Google Scholar 

  • Mcdonald, S., Prenzler, P. D., Autolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73–84.

    Article  CAS  Google Scholar 

  • Mucciarelli, M., Scannerini, S., Bertea, C., & Maffei, M. (2003). In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. The New Phytologist, 158, 579–591.

    Article  Google Scholar 

  • Nemat Shahi, M. M., Elhami Rad, A. H., Pedram, N. A., & Nemat, S. N. (2014). Study of antioxidant activity and free radical scavenging ability of lemon Verbena (Lippia Citriodora). Advances in Natural and Applied Science, 8, 59–63.

    Google Scholar 

  • Owen, N. L., & Hundley, N. (2004). Endophytes the chemical synthesizers inside plants. Science Progress, 87, 79–99.

    Article  CAS  PubMed  Google Scholar 

  • Pakvaz, S., & Soltani, J. (2016). Endohyphal bacteria from fungal endophytes of the Mediterranean cypress (Cupressus sempervirens) exhibit in vitro bioactivity. Forest Pathology, 46, 569–581.

    Article  Google Scholar 

  • Pascual, M. E., Slowing, K., Carretero, E., Sanchez, M. D., & Villar, A. (2001). Lippia: Traditional uses, chemistry and pharmacology: A review. Journal of Ethnopharmacology, 76, 201–214.

    Article  CAS  PubMed  Google Scholar 

  • Redman, R. S., Dunigan, D. D., & Rodriguez, R. J. (2001). Fungal symbiosis: From mutualism to parasitism, who controls the outcome, host or invader? The New Phytologist, 151, 705–716.

    Article  Google Scholar 

  • Rodriguez, R. J., Redman, R. S., & Henson, J. M. (2004). The role of fungal symbioses in the adaptation of plants to high stress environments. Mitigation and Adaptation Strategies for Global Change, 9, 261–272.

    Article  Google Scholar 

  • Roos, I. M. M., & Hattingh, M. J. (1983). Scanning electron microscopy of Pseudomonas syringae pv. morspronorum on sweet cherry leaves. Phytopathology, 108, 18–25.

    Article  Google Scholar 

  • Rouhier, N., Koh, C. S., Gelhaye, E., Corbier, C., Favier, F., Didierjean, C., et al. (2008). Redox based anti-oxidant systems in plants: Biochemical and structural analyses. Biochimica et Biophysica Acta, 1780, 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  • Scott, R. I., Chard, J. M., Hocart, M. J., Lennard, J. H., & Graham, D. C. (1996). Penetration of potato tuber lenticels by bacteria in relation to biological control of blackleg disease. Potato Research, 39, 333–344.

    Article  Google Scholar 

  • Soltani, J., & Hosseyni Moghaddam, M. S. (2014). Diverse and bioactive endophytic aspergilli inhabit Cupressaceae plant family. Archives of Microbiology, 196, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Soltani, J., & Hosseyni Moghaddam, M. S. (2015). Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Current Microbiology, 70, 580–586.

    Article  CAS  PubMed  Google Scholar 

  • Soltani, J., Zaheri-Shoja, M., Hamzei, J., Hosseyni-Moghaddam, M. S., & Pakvaz, S. (2016). Diversity and bioactivity of endophytic bacterial community of Cupressaceae. Forest Pathology, 46, 353–361.

    Article  Google Scholar 

  • Sørensen, J., Sessitsch, A. (2015) Plant-associated bacteria lifestyle and molecular interactions. In Van Elsas, J.D., et al. (Eds.), Modern soil microbiology. 2nd edn. CRC Press, 2006, (pp. 211–236).

  • Sprent, J. I., & de Faria, S. M. (1998). Mechanisms of infection of plants by nitrogen fixing organisms. Plant and Soil, 110, 157–165.

    Article  Google Scholar 

  • Stojichevich, S. S., Stanisavljevich, I. V., Velichkovich, D. T., Veljkovich, V. B., & Lazich, M. L. (2008). Comparative of the antioxidant and antimicrobial activities of Sempervium marmoreum L. extracts obtained by various extraction techniques. Journal of the Serbian Chemical Society, 73, 597–607.

    Article  CAS  Google Scholar 

  • Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Cheng, Z., & Glick, B. R. (2009). The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiology Letters, 296, 131–136.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmüller, R., & Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology, 167, 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, R., Awasthi, A., Mall, M., Shukla, A. K., Satya Srinivas, K. V. N., Syamasundar, K. V., & Kalra, A. (2013). Bacterial endophyte-mediated enhancement of in planta content of key terpenoidindole alkaloids and growth parameters of Catharanthus roseus. Industrial Crops and Products, 43, 306–310.

    Article  CAS  Google Scholar 

  • van Peer, R., & Schippers, B. (1989). Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Canadian Journal of Microbiology, 35, 456–463.

    Article  Google Scholar 

  • Varma, A., Verma, S., Sudha Sahay, N., Butehorn, B., & Franken, P. (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology, 65, 2741–2744.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White, J. F., & Torres, M. S. (2010). Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiologia Plantarum, 138, 440–446.

    Article  CAS  PubMed  Google Scholar 

  • White, D. C., Sutton, S. D., & Ringelberg, D. B. (1996). The genus Sphingomonas: Physiology and ecology. Current Opinion in Biotechnology, 7, 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102, 13386–13391.

Download references

Acknowledgments

Dr. Soheila Mirzaei, PhD, is appreciated for her assistance in microscopy studies for fungi identification. This work was financially supported by a grant from Bu-Ali Sina University (BASU) to A. Azizi. J. Soltani dedicates this work to Setia Soltani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Soltani.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golparyan, F., Azizi, A. & Soltani, J. Endophytes of Lippia citriodora (Syn. Aloysia triphylla) enhance its growth and antioxidant activity. Eur J Plant Pathol 152, 759–768 (2018). https://doi.org/10.1007/s10658-018-1520-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1520-x

Keywords

Navigation