Skip to main content
Log in

Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Interactions of Fusarium species with different wheat varieties differ in their temporal dynamics and symptom appearance. Reliable and objective approaches for monitoring processes during infection are demanded for plant phenotyping and disease rating. This study presents an automated method to phenotype wheat varieties to Fusarium head blight (FHB) using hyperspectral sensors. In time-series experiments, the optical properties of spikes infected with F. graminearum or F. culmorum were recorded. Two hyperspectral cameras, in visible and near-infrared (VIS-NIR, 400–1000 nm) and shortwave-infrared (SWIR, 1000–2500 nm) captured the most relevant bands for pigments, cell structure, water and further compounds. Correlations between disease severity (DS), spike weight, spectral bands and vegetation indices were investigated. Following, the detectability of infections was assessed by Support Vector Machine (SVM) classifier. A variety ranking based on AUDPC was performed and compared to a fully-automated approach using Non-metric Multi-Dimensional Scaling (NMDS). High correlation was found between the spectral signature and DS in 430–525 nm, 560–710 nm and 1115–2500 nm. All indices from the VIS-NIR showed high correlation with DS and, for the first time, this was also confirmed for three indices from the SWIR: NDNI, CAI and MSI. Using SVM, differentiation between healthy and infected spikes was possible (acc. > 0.76). Furthermore, the possibility to differentiate between F. graminearum and F. culmorum infected spikes has been verified. The NMDS approach was able to reproduce accurately the variety ranking and outlines the potential of hyperspectral imaging to phenotype the variety susceptibility for improved breeding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al Masri, A., Hau, B., Dehne, H.-W., Mahlein, A.-K., & Oerke, E.-C. (2017). Impact of primary infection site of Fusarium species on head blight development in wheat ears evaluated by IR-thermography. European Journal of Plant Pathology, 147, 855–868.

    Article  Google Scholar 

  • Alkadri, D., Rubert, J., Prodi, A., Pisi, A., Manes, J., & Soler, C. (2014). Natural co-occurrence of mycotoxins in wheat grains from Italy and Syria. Food Chemistry, 157, 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Aoki, T., O’Donnell, K., & Geiser, D. M. (2014). Systematics of key phytopathogenic Fusarium species: Current status and future challenges. Journal of General Plant Pathology, 80, 189–201.

    Article  CAS  Google Scholar 

  • Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computer and Electronics in Agriculture, 75, 304–312.

    Article  Google Scholar 

  • Behmann, J., Mahlein, A.-K., Rumpf, T., Römer, C., & Plümer, L. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture, 16, 239–260.

    Article  Google Scholar 

  • Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S., Thomas, S., Bohnenkamp, D., Kuska, M. T., Jussila, J., Salo, H., Mahlein, A. K., & Rascher, U. (2018). Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors, 18, 441.

    Article  CAS  Google Scholar 

  • Beukes, I., Rose, L. J., van Coller, G. J., & Viljoen, A. (2018). Disease development and mycotoxin production by the Fusarium graminearum species complex associated with south African maize and wheat. European Journal of Plant Pathology, 150, 893–910.

    Article  CAS  Google Scholar 

  • Birzele, B., Meier, A., Hindorf, H., Krämer, J., & Dehne, H.-W. (2002). Epidemiology of Fusarium infection and Deoxynivalenol content in winter wheat in the Rhineland, Germany. European Journal of Plant Pathology, 108, 667–673.

    Article  CAS  Google Scholar 

  • Blackburn, G. A. (1998a). Quantifying chlorophylls and carotenoids at leaf and canopy scale: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66, 273–285.

    Article  Google Scholar 

  • Blackburn, G. A. (1998b). Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. International Journal of Remote Sensing, 19, 657–675.

    Article  Google Scholar 

  • Borg, I., & Groenen, P. (2005). Modern multidimensional scaling: Theory and applications (2nd ed.). New York: Springer-Verlag.

    Google Scholar 

  • Brown, N. A., Urban, M., van deMeene, A. M. L., & Hammond-Kosack, K. E. (2010). The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology, 114, 555–571.

    Article  PubMed  Google Scholar 

  • Buerstmayr, H., Ban, T., & Anderson, J. A. (2009). QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat; a review. Plant Breeding, 128, 1–26.

    Article  CAS  Google Scholar 

  • Bushnell, W. R., Hazen, B. E., & Pritsch, C. (2003). Histology and physiology of Fusarium head blight. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 44–83). St. Paul, Minnesota: APS Press.

    Google Scholar 

  • Chetouhi, C., Bonhomme, L., Lecomte, P., Cambon, F., Merlino, M., Biron, D. G., & Langin, T. (2015). A proteomics survey on wheat susceptibility to Fusarium head blight during grain development. European Journal of Plant Pathology, 141, 407–418.

    Article  CAS  PubMed  Google Scholar 

  • Cortes, C., & Vapnik, N. V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    Google Scholar 

  • Daub, M. E., & Ehrenshaft, M. (2000). The photoactivated Cercospora toxin cercosporin: Contributions to plant disease and fundamental biology. Annual Review of Phytopathology, 38, 461–490.

    Article  CAS  PubMed  Google Scholar 

  • Daughtry, C. S. T. (2001). Discriminating crop residues from soil by shortwave infrared reflectance. Agronomy Journal, 93, 125–131.

    Article  Google Scholar 

  • Delalieux, S., Somers, B., Verstraeten, W. W., van Aardt, J. A. N., Keulemans, W., & Coppin, P. (2009). Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing, 30, 1887–1912.

    Article  Google Scholar 

  • van der Lee, T., Zhang, H., van Diepeningen, A., & Waalwijk, C. (2015). Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Additives & Contaminants: Part A, 32, 453–460.

    Article  CAS  Google Scholar 

  • Descriptive List of Varieties, Bundessortenamt, Germany. (2017). Getreide, Mais, Öl- und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte. In Bundessortenamt. Deutschland: Hannover https://www.bundessortenamt.de/internet30/index.php?id=41&tx_ttnews%5Btt_news%5D=308&cHash=bb2220e6c08a91dfd6a99e8fdf6575a3.

    Google Scholar 

  • Dweba, C. C., Figlan, S., Shimelis, H. A., Motaung, T. E., Sydenham, S., Mwadzingeni, L., & Tsilo, T. J. (2017). Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 91, 114–122.

    Article  CAS  Google Scholar 

  • Fahlgren, N., Feldman, M., Gehan, M., Wilson, M. S., Shyu, C., Bryant, D. W., Hill, S. T., McEntee, C. J., Warnasooriya, S. N., Kumar, I., Ficor, T., Turnipseed, S., Gilbert, K. B., Brutnell, T. P., Carrington, J. C., Mockler, T. C., & Baxter, I. (2015). A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Molecular Plant, 8, 1–16.

    Article  CAS  Google Scholar 

  • Ferrigo, D., Alessandro Raiola, A., & Roberto, R. (2016). Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21, 627.

    Article  CAS  PubMed Central  Google Scholar 

  • Furbank, R. T., & Tester, M. (2011). Phenomics - technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Gamon, J. A., Peñeulas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35–44.

    Article  Google Scholar 

  • Gilbert, J., & Haber, S. (2013). Overview of some recent research developments in Fusarium head blight of wheat. Canadian Journal of Plant Pathology, 35, 149–174.

    Article  CAS  Google Scholar 

  • Ha, X., Koopmann, B., & von Tiedemann, A. (2016). Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology, 106, 270–281.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, E., & Rock, B. (1989). Detection of changes in leaf water-content using near-infrared and middle-infrared reflectances. Remote Sensing of Environment, 30, 43–54.

    Article  Google Scholar 

  • Iori, A., Scala, V., Cesar, D., Pinzari, F., D’Egidio, M. G., Fanelli, C., Fabbri, A. A., Reverberi, M., & Serranti, S. (2015). Hyperspectral and molecular analysis of Stagonospora nodorum blotch disease in durum wheat. European Journal of Plant Pathology, 141, 689–702.

    Article  Google Scholar 

  • Johnson, D. D., Flakerud, G. K., Taylor, R. D., & Satyanarayana, V. (2003). Quantifying economic impacts of Fusarium head blight in wheat. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 461–484). St. Paul, Minnesota: APS Press.

    Google Scholar 

  • Kreuzberger, M., Limsuwan, S., Eggert, K., Karlovsky, P., & Pawelzik, E. (2015). Impact of Fusarium spp. infection of bread wheat (Triticum aestivum L.) on composition and quality of flour in association with EU maximum level for deoxynivalenol. Journal of Applied Botany and Food Quality, 88, 177–185.

    CAS  Google Scholar 

  • Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.

    Article  Google Scholar 

  • Kuhnem, P. R., Del Ponte, E. M., Dong, Y., & Bergstrom, G. C. (2015). Fusarium graminearum isolates from wheat and maize in New York show similar range of aggressiveness and Toxigenicity in cross-species pathogenicity tests. Phytopathology, 105, 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Kuska, M. T., & Mahlein, A.-K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-018-1464-1.

  • Kuska, M. T., Brugger, A., Thomas, S., Wahabzada, M., Kersting, K., Oerke, E. C., Steiner, U., & Mahlein, A. K. (2017). Spectral patterns reveal early resistance reactions of barley against Blumeria graminis f. Sp. hordei. Phytopathology, 107, 1388–1398.

    Article  CAS  PubMed  Google Scholar 

  • Lancashire, P. D., Bleiholder, H., Van den Boom, T., Langeluddecke, P., Stauss, R., Weber, E., & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119, 561–601.

    Article  Google Scholar 

  • Leucker, M., Mahlein, A.-K., Steiner, U., & Oerke, E.-C. (2016). Improvement of lesion phenotyping in Cercospora beticola-sugar beet interaction by hyperspectral imaging. Phytopathology, 106, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Mahlein, A.-K. (2016). Present and future trends in plant disease detection. Plant Disease, 100, 241–251.

    Article  PubMed  Google Scholar 

  • Mahlein, A.-K., Steiner, U., Dehne, H.-W., & Oerke. E.-C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11, 413–431.

  • Mahlein, A.-K., Steiner, U., Hillnhütter, C., Dehne, H.-W., & Oerke, E.-C. (2012). Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormick, S. (2003). The role of DON in pathogenicity. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 165–183). St. Paul, Minnesota: APS Press.

    Google Scholar 

  • McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96, 1712–1728.

    Article  PubMed  Google Scholar 

  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologica Plantarum, 106, 135–141.

    Article  CAS  Google Scholar 

  • Mesterházy, Á., Buerstmayr, H., Tóth, B., Lehoczki-Krsjak, Sz., Szabó-Hevér, Á. & Lemmens, M. (2007). An improved strategy for breeding FHB resistant wheat must include type I resistance. In Proceedings of the 5th Canadian workshop on Fusarium head blight, 27-30 November 2007, Delta Winnipeg (Canada), 51–66.

  • Mesterházy, Á., Lehoczki-Krsjak, S., Varga, M., Szabó-Hevér, Á., Tóth, B., & Lemmens, M. (2015). Breeding for FHB resistance via Fusarium damaged kernels and Deoxynivalenol accumulation as well as inoculation methods in winter wheat. Agricultural Sciences, 6, 970–1002.

    Article  CAS  Google Scholar 

  • Moradi, G. M. (2008). Microbiological and molecular assessment of interactions among the major Fusarium head blight pathogens on wheat ear. In Bonn. Germany: University of Bonn. PhD thesis.

    Google Scholar 

  • Nagler, P. L., Inoue, Y., Glenn, E. P., Russ, A. L., & Daughtry, C. S. T. (2003). Cellulose absorption index (CAI) to quantify mixed soil–plant litter scenes. Remote Sensing of Environment, 87, 310–325.

    Article  Google Scholar 

  • O'Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623.

    Article  CAS  PubMed  Google Scholar 

  • Osborne, L. M., & Stein, J. M. (2007). Epidemiology of Fusarium head blight on small-grain cereals. International Journal of Food Microbiology, 119, 103–108.

    Article  PubMed  Google Scholar 

  • Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R., Boutigny, A.-L., Chrpová, J., Czembor, E., Gagkaeva, T., González-Jaén, M. T., Hofgaard, I. S., Köycü, N. D., Hoffmann, L., Levic, J., Marin, P., Miedaner, T., Migheli, Q., Moretti, A., Müller, M. E. H., Munaut, F., Parikka, P., Pallez-Barthel, M., Piec, J., Scauflaire, J., Scherm, B., Stankovic, S., Thrane, U., Uhlig, S., Vanheule, A., Yli-Mattila, T., & Vogelgsang, S. (2016). A European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Frontiers in Microbiology, 7, 406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peñuelas, J., Baret, F., & Filella, I. (1995). Semiempirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.

    Google Scholar 

  • Peñuelas, J., Pinol, R. O., Ogaya, R., & Filella, I. (1997). Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, 18, 2869–2875.

    Article  Google Scholar 

  • Pestka, J. J. (2010). Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84, 663–679.

    Article  CAS  PubMed  Google Scholar 

  • Ribichich, K. F., Lopez, S. E., & Vegetti, A. C. (2000). Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Disease, 84, 794–802.

    Article  PubMed  Google Scholar 

  • Rotter, B. A., Prelusky, D. B., & Pestka, J. J. (1996). Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology and Environmental Health, 48, 1–34.

    Article  CAS  PubMed  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings 3th Earth Resources Technology Satellite-1 Symposium, Goddard Space Flight Center, 10–14 December 1973, NASA, Washington, D.C. (USA), 309–317.

  • Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., & Plümer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74, 91–99.

    Article  Google Scholar 

  • Salgado, J. D., Madden, L. V., & Paul, P. A. (2015). Quantifying the effects of Fusarium head blight on grain yield and test weight in soft red winter wheat. Phytopathology, 105, 295–306.

    Article  PubMed  Google Scholar 

  • Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.

    Google Scholar 

  • Serrano, L., Peñuelas, J., & Ustin, S. L. (2002). Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sensing of Environment, 81, 355–364.

    Article  Google Scholar 

  • Simko, I., & Piepho, H.-P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102, 381–389.

    Article  PubMed  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationship between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  Google Scholar 

  • Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 21, 110–124.

    Article  CAS  PubMed  Google Scholar 

  • Siuda, R., Grabowski, A., Lenc, L., Ralcewicz, M., & Spychaj-Fabisiak, E. (2010). Influence of the degree of fusariosis on technological traits of wheat grain. International Journal of Food Science and Technology, 45, 2596–2604.

    Article  CAS  Google Scholar 

  • Stack, R. W., & McMullen, M. P. (1995). A visual scale to estimate severity of Fusarium head blight in wheat. North Dakota State University Extension Service, PP-1095.

  • Steiner, B., Buerstmayr, M., Michel, S., Schweiger, W., Lemmens, M., & Buerstmayr, H. (2017). Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Tropical Plant Pathology, 42, 165–174.

    Article  Google Scholar 

  • Talas, F., Parzies, H. K., & Miedaner, T. (2011). Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. European Journal of Plant Pathology, 131, 39–48.

    Article  Google Scholar 

  • Thomas, S., Wahabzada, M., Kuska, M.-T., Rascher, U., & Mahlein, A.-K. (2016). Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Functional Plant Biology, 44, 23–34.

    Article  CAS  Google Scholar 

  • Thomas, S., Kuska, M.-T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., & Mahlein, A.-K. (2018). Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. Journal of Plant Diseases and Protection, 125, 5–20.

    Article  Google Scholar 

  • Trail, F. (2009). For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiology, 149, 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Wieser, H., Pawelzik, E., Weinert, J., Keutgen, A. J., & Wolf, G. A. (2005). Impact of the fungal protease produced by Fusarium culmorum on the protein quality and breadmaking properties of winter wheat. European Food Research and Technology, 220, 225–259.

    Article  CAS  Google Scholar 

  • Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K., Gaba, D., Patrick, S., Starkey, D. E., Gilbert, J., Geiser, D. M., & Nowicki, T. W. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45, 473–484.

    Article  PubMed  Google Scholar 

  • Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, article ID, 1353691 17 Pages.

Download references

Acknowledgements

This study was funded by the German Federal Ministry of Education and Research (BMBF) within the scope of the competitive grants program “Networks of excellence in agricultural and nutrition research - CROP.SENSe.net” (Funding code: 0315529), Junior Research Group “Hyperspectral phenotyping of resistance reactions of barley” and due to financial support of the Catholic Academic Exchange Service (KAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Behmann.

Electronic supplementary material

Fig. S1

Progress of spectral signature of control spikes 4, 21 and 21 dai respectively. (GIF 43 kb)

High Resolution Image (TIF 277 kb)

Table S1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alisaac, E., Behmann, J., Kuska, M.T. et al. Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species. Eur J Plant Pathol 152, 869–884 (2018). https://doi.org/10.1007/s10658-018-1505-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1505-9

Keywords

Navigation