European Journal of Plant Pathology

, Volume 152, Issue 2, pp 343–354 | Cite as

Molecular diversity in Fusarium oxysporum isolates from common bean fields in Brazil

  • Andre Freire Cruz
  • Lucas Fagundes Silva
  • Tiago Vieira Sousa
  • Alessandro Nicoli
  • Trazilbo Jose de Paula Junior
  • Eveline Teixeira Caixeta
  • Laercio Zambolim


The common bean (Phaseolus vulgaris L.) is widely cultivated in Brazil and is known as a very important crop for families in this country. Fusarium wilt severely harms common beans and has become a big issue for this crop. In order to assist the breeding programs that target resistance to this disease, the evaluation of genetic diversity of the pathogen and its molecular characterization are crucial. Thus, the present goal was to identify Fusarium isolates obtained from several places in Brazil using molecular tools; select molecular markers for these isolates; and analyze their diversity. All of isolates were molecularly identified as Fusarium oxysporum f. sp. phaseoli (Fop). By using seven selected SSR markers, the results of diversity obtained by the dendrogram and the Bayesian analysis formed four groups where a large diversity of this fungus was found within each state. However, the groups were more homogenous according to the collection source and the pathogenicity test. More specifically, group 2 was composed of the most virulent strains and originated from Minas Gerais State – UFV, and group 3 was mostly composed by isolates from Goias state. Group I was also more diverse in terms of location and virulence. The overall results indicated a positive correlation between Fusarium diversity and its virulence to common bean. Furthermore, the use of these markers was effective in molecular identification and in detecting polymorphism within F. oxysporum f. sp. phaseoli.


Diversity Fusarium Genetic Molecular markers Phaseolus vulgaris 



This research was supported by Research Support Foundation of Minas Gerais (FAPEMIG) - Brazil and the National Council for Scientific and Technological Development (CNPq) - Brazil. Thanks also to laboratory of Coffee Biotechnology (Universidade Federal de Vicosa - UFV) for their assistance during the experiment. The authors also thank the Instituto Agronomico de Campinas (IAC), Universidade Federal de Lavras (UFLA) - Laboratory of Seed Pathology, and Embrapa Arroz e Feijao for provide the isolates. Finally the authors would like to express their gratitude to Prof, Dr. Cosme Damiao da Cruz and the laboratory of Bioinformatics for help with the statistical analysis.

Supplementary material

10658_2018_1479_MOESM1_ESM.pptx (287 kb)
ESM 1 (PPTX 287 kb)


  1. Alves-Santos, F. M., Ramos, B., García-Sánchez, M. A., Eslava, A. P., & Díaz-Mínguez, J. M. (2002). A DNA-based procedure for in planta detection of Fusarium oxysporum f. sp. phaseoli. Phytopathology, 92(3), 237–244. Scholar
  2. Aoki, T., & O’Donnell, K. (1999). Morphological and molecular characterization of Fu sarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. Graminearum. Mycologia, 597–609.Google Scholar
  3. Aoki, T., O’Donnell, K., & Scandiani, M. M. (2005). Sudden death syndrome of soybean in South America is caused by four species of Fusarium: Fusarium brasiliense sp. nov., F. Cuneirostrum sp. nov., F. Tucumaniae, and F. Virguliforme. Mycoscience, 46(3), 162–183. Scholar
  4. Balmas, V., Migheli, Q., Scherm, B., Garau, P., O’Donnell, K., Ceccherelli, G., et al. (2010). Multilocus phylogenetics show high levels of endemic fusaria inhabiting Sardinian soils (Tyrrhenian Islands). Mycologia, 102(4), 803–812. Scholar
  5. Barve, M. P., Haware, M. P., Sainani, M. N., Ranjekar, P. K., & Gupta, V. S. (2001). Potential of microsatellites to distinguish four races of Fusarium oxysporum f. sp. ciceri prevalent in India. Theoretical and Applied Genetics, 102(1), 138–147. Scholar
  6. Bogale, M., Wingfield, B. D., Wingfield, M. J., & Steenkamp, E. T. (2005). Simple sequence repeat markers for species in the Fusarium oxysporum complex. Molecular Ecology Notes, 5(3), 622–624. Scholar
  7. Britz, H., Steenkamp, E. T., Coutinho, T. A., Wingfield, B. D., Marasas, W. F. O., & Wingfield, M. J. (2002). Two new species of Fusarium section Liseola associated with mango malformation. Mycologia, 94(4), 722–730. Scholar
  8. Bruns, T. D., White, T. J., & Taylor, J. W. (1991). Fungal molecular systematics. Annual Review of Ecology and Systematics, 22, 525–564.CrossRefGoogle Scholar
  9. Buruchara, R. A., & Camacho, L. (2000). Common bean reaction to Fusarium oxysporum f. sp. phaseoli, the cause of severe vascular wilt in Central Africa. Journal of Phytopathology, 148(1), 39–45.CrossRefGoogle Scholar
  10. Carneiro, F. F., Ramalho, M. A. P., & Pereira, M. J. Z. (2010). Fusarium oxysporum f. sp. phaseoli and Meloidogyne incognita interaction in common bean. Crop Breeding and Applied Biotechnology, 10(3), 271-274.Google Scholar
  11. Castellá, G., Cano, J., Guarro, J., & Cabañes, F. J. (1999). DNA fingerprinting of Fusarium solani isolates related to a cutaneous infection in a sea turtle. Medical Mycology, 37(4), 223–226. Scholar
  12. CONAB. (2017). Companhia Nacional de Abastecimento. Acompanhamento de safra brasileira: grãos, décimo levantamento, julho 2017/Companhia Nacional de Abastecimento (1st ed.). Brasilia.
  13. Costa, R., Pereira, G., Garrido, I., Tavares-de-Sousa, M. M., & Espinosa, F. (2016). Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify Orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS One, 11(4), e0152972. Scholar
  14. Cruz, C. D. (2013). GENES: A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35(3), 271-276.Google Scholar
  15. Cruz, C. D., Ferreira, F. M., & Pessoni, L. A. (2011). Biometria aplicada ao estudo da diversidade genética (pp. 620). Suprema: Visconde do Rio Branco.Google Scholar
  16. Datta, S., Choudhary, R. G., Shamim, M., Singh, R. K., & Dhar, V. (2011). Molecular diversity in Indian isolates of Fusarium oxysporum f. sp. lentis inciting wilt disease in lentil (Lens culinaris Medik). African Journal of Biotechnology, 10(38), 7314.Google Scholar
  17. de Brito, G. G., Caixeta, E. T., Gallina, A. P., Zambolim, E. M., Zambolim, L., Diola, V., & Loureiro, M. E. (2010). Inheritance of coffee leaf rust resistance and identification of AFLP markers linked to the resistance gene. Euphytica, 173(2), 255–264. Scholar
  18. de Farias Neto, A. L., Hartman, G. L., Pedersen, W. L., Li, S., Bollero, G. A., & Diers, B. W. (2006). Irrigation and inoculation treatments that increase the severity of soybean sudden death syndrome in the field. Crop Science, 46(6), 2547–2554.CrossRefGoogle Scholar
  19. del Mar Jiménez-Gasco, M., Pérez-Artés, E., & Jiménez-Diaz, R. M. (2001). Identification of pathogenic races 0, 1B/C, 5, and 6 of Fusarium oxysporum f. sp. ciceris with random amplified polymorphic DNA (RAPD). European Journal of Plant Pathology, 107(2), 237–248.CrossRefGoogle Scholar
  20. Silva, A. D., Oliveira, E. J., Haddad, F., Jesus, O. N., Oliveira, S. A., & Costa, M. A. (2013). Molecular fingerprinting of Fusarium oxysporum f. sp. passiflorae isolates using AFLP markers. Scientia Agricola, 70(2), 108-115.Google Scholar
  21. Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.Google Scholar
  22. Dubey, S. C., & Singh, S. R. (2008). Virulence analysis and oligonucleotide fingerprinting to detect diversity among Indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Mycopathologia, 165(6), 389–406. Scholar
  23. Gaur, V. K., & Sharma, L. C. (1989). Variability in singel spore isolates of fusarium udum Butler. Mycopathologia, 107(1), 9–15. Scholar
  24. Giraud, T., Fournier, E., Vautrin, D., Solignac, M., Vercken, E., Bakan, B., & Brygoo, Y. (2002). Isolation of eight polymorphic microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Fusarium culmorum. Molecular Ecology Notes, 2(2), 121–123. Scholar
  25. Goodwin, S. B., Sujkowski, L. S., & Fry, W. E. (1995). Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus. Genetics, 85(6), 669–676.Google Scholar
  26. Hartman, G. L., Huang, Y. H., Nelson, R. L., & Noel, G. R. (1997). Germplasm evaluation of Glycine max for resistance to Fusarium solani, the causal organism of sudden death syndrome. Plant Disease, 81(5), 515–518.CrossRefGoogle Scholar
  27. Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 427–432.Google Scholar
  28. Huertas-González, M. D., Ruiz-Roldán, M. C., Di Pietro, A., & Roncero, M. I. G. (1999). Cross protection provides evidence for race-specific avirulence factors in Fusarium oxysporum. Physiological and Molecular Plant Pathology, 54(3), 63–72. Scholar
  29. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874 Scholar
  30. Laurence, M. H., Burgess, L. W., Summerell, B. A., & Liew, E. C. Y. (2012). High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia. Fungal Biology, 116(2), 289–297. Scholar
  31. Lehner, M. S., Paula Júnior, T. J., Hora Júnior, B. T., Teixeira, H., Vieira, R. F., Carneiro, J. E. S., & Mizubuti, E. S. G. (2015). Low genetic variability in Sclerotinia sclerotiorum populations from common bean fields in Minas Gerais State, Brazil, at regional, local and micro-scales. Plant Pathology, 64(4), 921–931.CrossRefGoogle Scholar
  32. Lehner, M. S., Lima, R. C., Carneiro, J. E. S., Paula Júnior, T. J., Vieira, R. F., & Mizubuti, E. S. G. (2016). Similar aggressiveness of phenotypically and genotypically distinct isolates of Sclerotinia sclerotiorum. Plant Disease, 100(2), 360–366.CrossRefGoogle Scholar
  33. Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. 2006. Ames, Iowa: Blackwell Publishing CrossRef Google Scholar.CrossRefGoogle Scholar
  34. Li, Y.-C., Korol, A. B., Fahima, T., Beiles, A., & Nevo, E. (2002). Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 11(12), 2453–2465. Scholar
  35. Ma, L.-J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M.-J., Di Pietro, A., et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367–373 Scholar
  36. Mahfooz, S., Maurya, D. K., Srivastava, A. K., Kumar, S., & Arora, D. K. (2012). A comparative in silico analysis on frequency and distribution of microsatellites in coding regions of three formae speciales of Fusarium oxysporum and development of EST–SSR markers for polymorphism studies. FEMS Microbiology Letters, 328(1), 54. Scholar
  37. MwangOmbe, A. W., ThiongO, G., Olubayo, F. M., & Kiprop, E. K. (2007). DNA microsatellite analysis of Kenyan isolates of Rhizoctonia solani from common bean (Phaseolus vulgaris L.). Plant Pathology Journal, 6, 66–71.CrossRefGoogle Scholar
  38. Nagy, S., Poczai, P., Cernák, I., Gorji, A. M., Heged\Hus, G., & Taller, J. (2012). PICcalc: An online program to calculate polymorphic information content for molecular genetic studies. Biochemical Genetics, 50(9), 670–672. Scholar
  39. Nene, Y. L., Sheila, V. K., & Sharma, S. B. (1996). A world list of chickpea and pigeonpea pathogens (5th ed.). Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
  40. O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungusfusariumare nonorthologous. Molecular Phylogenetics and Evolution, 7(1), 103–116. Scholar
  41. O’Donnell, K., Humber, R. A., Geiser, D. M., Kang, S., Park, B., Robert, V. A., et al. (2012) Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. Mycologia, 104(2), 427–445.Google Scholar
  42. O’Donnell, K., Ward, T. J., Robert, V. A. R. G., Crous, P. W., Geiser, D. M., & Kang, S. (2015). DNA sequence-based identification of Fusarium: Current status and future directions. Phytoparasitica, 43(5), 583–595. Scholar
  43. Oliveira, P. R. P. M., Dianese, A. C., Fragoso, R. R., Cruz, A. F., & Blum, L. E. B. (2014). Variability of Fusarium spp. isolates, causal agents of the soybean sudden death syndrome. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 64(8), 675–682.CrossRefGoogle Scholar
  44. Panthee, D. R., & Chen, F. (2010). Genomics of fungal disease resistance in tomato. Current Genomics, 11(1), 30–39. Scholar
  45. Pastor-Corrales, M. A., & Abawi, G. S. (1987). Reactions of selected bean germ plasms to infection by Fusarium oxysporum f. sp. phaseoli. Plant Disease, 71(11), 990–993.CrossRefGoogle Scholar
  46. Paula Junior, T. J. de, Vieira, R. F., & Zambolim, L. M. (2004). Manejo integrado de doenças do feijoeiro. Informe Agropecuário, 25, 99–112.Google Scholar
  47. Paula Júnior, T. J., Vieira, R. F., Teixeira, H., Lobo Junior, M., & Wendland, A. (2015). Doenças do feijoeiro: estratégias integradas de manejo. In J. Carneiro, T. Paula Júnior, & A. Borém (Eds.), Feijão: do plantio à colheita (pp. 270–299). Editora UFV: Viçosa-Brazil.Google Scholar
  48. Pereira, M. J. Z., Ramalho, M. A. P., & Abreu, A. d. F. B. (2011). Reacao de linhagens de feijoeiro ao fungo Fusarium oxysporum f. sp. phaseoli em condicoes controladas. Ciencia e Agrotecnologia, 35, 940–947 Scholar
  49. Petrov, N. B., Vladychenskaya, I. P., Drozdov, A. L., & Kedrova, O. S. (2016). Molecular genetic markers of intra-and interspecific divergence within starfish and sea urchins (Echinodermata). Biochemistry (Moscow), 81(9), 972–980.CrossRefGoogle Scholar
  50. Ramalho, M., Abreu, A., Carneiro, J., Wendland, A., Paula Júnior, T., Vieira, R., et al. (2012). Murcha-de-fusarium. In W. A. Paula Júnior, TJ (Ed.), Melhoramento genético do feijoeiro-comum e prevenção de doenças (p. 158). Vicosa-MG: EPAMIG Zona da Mata.Google Scholar
  51. Schwartz, H. F., Steadman, J. R., Hall, J. R., & Forster, R. L. (2005). Compendium of bean diseases (2nd ed.). St Paul: American Phytopathological Society.Google Scholar
  52. Shit, S. K., & Sen, G. P. K. (1978). Possible existence of physiological races of Fusarium oxysporum f. sp. udum the incitant of the wilt of pigeonpea. Indian J Agric Sci, 11, 46–48.Google Scholar
  53. Summerell, B., Laurence, M. H., Liew, E. C., & Leslie, J. F. (2010). Biogeography and phylogeography of Fusarium: A review. Fungal Diversity, 44(1), 1–11.CrossRefGoogle Scholar
  54. Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(16), 6463–6471 Scholar
  55. Toledo Souza, E. D. de , Silveira, P. M. da, Café Filho, A. C., & Lobo Junior, M. (2012). Fusarium wilt incidence and common bean yield according to the preceding crop and the soil tillage system. Pesquisa Agropecuária Brasileira, 47(8), 1031-1037.Google Scholar
  56. Tsui, C. K. M., Woodhall, J., Chen, W., Lévesque, C. A., Lau, A., Schoen, C. D., et al. (2011). Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus: The Global Mycological Journal, 2(2), 177–189. Scholar
  57. White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Ed), PCR protocols: a guide to methods and applications (pp. 315–322). United States: Academic Press.Google Scholar
  58. Woo, S. L., Zoina, A., Del Sorbo, G., Lorito, M., Nanni, B., Scala, F., et al. (1996). Characterization of Fusariam oxysporum f. sp. phaseoti by pathogenic races, VCGs, RFLPs, and RAPD. Phytopathology-New York and Baltimore Then St Paul, 86, 966–973.Google Scholar
  59. Yeh, F. C. (1997). Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian Journal of Botany, 129, 157.Google Scholar
  60. Zhang, S., Zhao, X., Wang, Y., Li, J., Chen, X., Wang, A., & Li, J. (2012). Molecular detection of Fusarium oxysporum in the infected cucumber plants and soil. Pakistan Journal of Botany, 44(4), 1445–1451.Google Scholar
  61. Zolan, M. E., & Pukkila, P. J. (1986). Inheritance of DNA methylation in Coprinus cinereus. Molecular and Cellular Biology, 6, 195–200.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Andre Freire Cruz
    • 1
    • 2
  • Lucas Fagundes Silva
    • 3
  • Tiago Vieira Sousa
    • 4
  • Alessandro Nicoli
    • 3
    • 5
  • Trazilbo Jose de Paula Junior
    • 2
  • Eveline Teixeira Caixeta
    • 6
  • Laercio Zambolim
    • 3
  1. 1.Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
  2. 2.Empresa de Pesquisa Agropecuaria de Minas GeraisBelo HorizonteBrazil
  3. 3.Departmento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Departmento de FitotecniaUniversidade Federal de VicosaViçosaBrazil
  5. 5.Instituto de Ciencias AgrariasUniversidade Federal dos Vales do Jequitinhonha e MucuriUnaiBrazil
  6. 6.Empresa Brasileira de Pesquisa AgropecuáriaBrasíliaBrazil

Personalised recommendations