Skip to main content

Advertisement

Log in

The genus Luteovirus from infection to disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Luteoviruses are economically important plant viruses. Specifically, barley yellow dwarf virus is epiphytotic to almost all small-grain cereal growing areas. The disease cycle is complex. This luteovirus has evolved several intelligent mechanisms to communicate with both plant and phloem-feeding insect-vector aphid. Environmental cues influence disease severity, aphid infestation and viral load. Within an aphid, virus circulates persistently in a non-propagative manner and is transmitted selectively to the host plants. Selection of viruses within aphids has a role in virus isolate prevalence over a specific area. In the host-plant system, the virus has to release its single sense-strand RNA genome (approx. 5.6 to 6 kb), translate and subsequently replicate its genome using its own replicase and host machinery. This review summarizes our current understanding of disease epidemiology and reviews the current literature encompassing viral infectivity, economic impact and control measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achon, M. A., Serrano, L., Ratti, C., & Rubies-Autonell, C. (2006). First detection of wheat dwarf virus in barley in Spain associated with an outbreak of barley yellow dwarf. Plant Disease, 90, 970–970.

    Article  Google Scholar 

  • Adams, M. J., Lefkowitz, E. J., King, A. M. Q., & Carstens, E. B. (2014). Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses. Archives of Virology, 159, 2831–2841.

    Article  PubMed  CAS  Google Scholar 

  • Ajayi, O., & Dewar, A. M. (1982). The effect of barley yellow dwarf virus on honeydew production by the cereal aphids Sitobion Avenae and Metopolophium dirhodum. Annals of Applied Biology, 100, 203–212.

    Article  Google Scholar 

  • Ajayi, O., & Dewar, A. M. (1983). The effect of barley yellow dwarf virus on field populations of cereal aphids, Sitobion Avenae and Metopolophium dirhodum. Annals of Applied Biology, 103, 1–11.

    Article  Google Scholar 

  • Alexander, M. M., Mohr, J. P., DeBlasio, S. L., Chavez, J. D., Ziegler-Graffe, V., Brault, V., Bruce, J. E., & Cilia, M. H. (2017). Insights in luteovirid structural biology guided by chemical cross-linking and high resolution mass spectrometry. Virus Research. https://doi.org/10.1016/j.virusres.2017.05.005

  • Ali, M., Hameed, S., & Tahir, M. (2014). Luteovirus: Insights into pathogenicity. Archives of Virology, 159(8). https://doi.org/10.1007/s00705-014-2172-6

  • Ali, M., Tahir, M., & Hameed, S. (2017). Phylogenetic and genome-wide pairwise distance analysis of the genus Luteovirus. Pakistan Journal of Agricultural Sciences, 54(2), 363–371. https://doi.org/10.21162/PAKJAS/17.4590

    Article  CAS  Google Scholar 

  • Alvarez, A. E., Garzo, E., Verbeek, M., Vosman, B., Dicke, M., & Tjallingii, W. F. (2007). Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 125, 135–144.

    Article  Google Scholar 

  • Astier, S., Albouy, J., Lecoq, H., Maury, Y. (2001). Principes de virologie végétale: génome, pouvoir pathogène, écologie des virus. INRA.

  • Ayala, L., Henry, M., González-de-León, D., van Ginkel, M., Mujeeb-Kazi, A., Keller, B., & Khairallah, M. (2001). A diagnostic molecular marker allowing the study of Th. Intermedium-derived resistance to BYDV in bread wheat segregating populations. Theoretical and Applied Genetics, 102, 942–949.

    Article  CAS  Google Scholar 

  • Bag, S., Rwahnih, M. A., Li, A., Gonzalez, A., Rowhani, A., Uyemoto, J. K., & Sudarshana, M. R. (2015). Detection of a new Luteovirus in imported nectarine trees: A case study to propose adoption of metagenomics in post-entry Quarentine. Phytopathology, 105(6), 840–846. https://doi.org/10.1094/Phyto-09-14-0262-R

    Article  PubMed  Google Scholar 

  • Baltenberger, D., Ohm, H., & Foster, J. (1987). Reactions of oat, barley, and wheat to infection with barley yellow dwarf virus isolates. Crop Science, 27, 195–198.

    Article  Google Scholar 

  • Banks, P., Davidson, J., Bariana, H., & Larkin, P. (1995). Effects of barley yellow dwarf virus on the yield of winter wheat. Australian Journal of Agricultural Research, 46, 935–946.

    Article  Google Scholar 

  • Barker, H., & Waterhouse, P. M. (1999). The development of resistance to luteoviruses mediated by host genes and pathogen-derived transgenes. In H. G. Smith & H. Barker (Eds.), The Luteoviridae (pp. 169–210). Wallingford: CABI Publishing.

    Google Scholar 

  • Barry, J. K., & Miller, W. A. (2002). A programmed-1 ribosomal frameshift that requires base-pairing across four kilobases suggests a novel mechanism for controlling ribosome and replicase traffic on a viral RNA. Proceedings of National Academy of Sciences USA, 99, 11133–11138.

    Article  CAS  Google Scholar 

  • Bencharki, B., Mutterer, J., Yamani, M. E., Ziegler-Graff, V., Zaoui, D., & Jonard, G. (1999). Severity of infection of Moroccan barley yellow dwarf virus PAV isolates correlates with variability in their coat protein sequences. Annals of Applied Biology, 134, 89–99.

    Article  CAS  Google Scholar 

  • Boissinot, S., Erdinger, M., Monsion, B., Ziegler-Graff, V., & Brault, V. (2014). Both structural and non-structural forms of the readthrough protein of cucurbit aphid-borne yellows virus are essential for efficient systemic infection of plants. PLoS One, 9(4), 1–10.

    Article  CAS  Google Scholar 

  • Bonning, B. C., Pal, N., Liu, S., Wang, Z., Sivakumar, S., Dixon, P. M., King, G. F., & Miller, W. A. (2014). Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nature Biotechnology, 32, 102–105. https://doi.org/10.1038/nbt.2753

    Article  PubMed  CAS  Google Scholar 

  • Bosque-Pérez, N. A., & Eigenbrode, S. D. (2011). The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Research, 159, 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Bouvaine, S., Bouvaine, S., Boonham, N., & Douglas, A. E. (2011). Interactions between a luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera Aphidicola of aphids. Journal of General Virology, 92, 1467–1474. https://doi.org/10.1099/vir.0.029355-0

    Article  PubMed  CAS  Google Scholar 

  • Boyko, V., Ferralli, J., Ashby, J., Schellenbaum, P., & Heinlein, M. (2000). Function of microtubules in intercellular transport of plant virus RNA. Nature Cell Biology, 2, 826–832.

    Article  PubMed  CAS  Google Scholar 

  • Brault, V., van den Heuvel, J. F. J. M., Verbeek, M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Garaud, J. C., Guilley, H., Richards, K., & Jonard, G. (1995). Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO Journal, 14(4), 650–659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brault, V., Mutterer, J., Scheidecker, D., Simonis, M. T., Herrbach, E., Richards, K., & Ziegler-Graff, V. (2000). Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. Journal of Virology, 74, 1140–1148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brault, V., Périgon, S., Reinbold, C., Erdinger, M., Scheidecker, D., Herrbach, E., Richards, K., & Ziegler-Graff, V. (2005). The Polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. Journal of Virology, 79, 9685–9693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brault, V., Herrbach, É., & Reinbold, C. (2007). Electron microscopy studies on luteovirid transmission by aphids. Micron, 38, 302–312.

    Article  PubMed  CAS  Google Scholar 

  • Brault, V., Uzest, M., Monsion, B., Jacquot, E., & Blanc, S. (2010). Aphids as transport devices for plant viruses. Comptes Rendus Biologies, 333, 524–538.

    Article  PubMed  Google Scholar 

  • Brault, V., Herrbach, E., & Rodriguez-Medina, C. (2011). Luteoviruses, eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0000751.p.

  • Burrows, M. E., Caillaud, M. C., Smith, D. M., & Gray, S. M. (2007). Biometrical genetic analysis of luteovirus transmission in the aphid Schizaphis graminum. Heredity, 98, 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, A., Giesman-Cookmeyer, D., Gillock, E., Sit, T., & Lommel, S. (2001). The multifunctional capsid proteins of plant RNA viruses. Annual Review of Phytopathology, 39, 419–460.

    Article  PubMed  CAS  Google Scholar 

  • Candresse, T., Faure, C., Theil, S., & Marais, A. (2017). First report of nectarine stem pitting-associated virus infecting Prunus mume in Japan. Plant Disease, 101, 393. https://doi.org/10.1094/PDIS-09-16-1323-PDN

    Article  CAS  Google Scholar 

  • Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2005). Analysis of accumulation patterns of barley yellow dwarf virus-PAV (BYDV-PAV) in two resistant wheat lines. European Journal of Plant Pathology, 113, 343–355.

    Article  CAS  Google Scholar 

  • Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P., & Kaloshian, I. (2015). Potato aphid salivary proteome: Enhanced salivation using resorcinol and identification of aphid phosphoproteins. Journal of Proteome Research. https://doi.org/10.1021/pr501128k

  • Chavez, J. D., Cilia, M., Weisbrod, C. R., Ju, H. J., Eng, J. K., Gray, S. M., & Bruce, J. E. (2012). Cross-linking measurements of the potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions. Journal of Proteome Research, 11, 2968–2981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chay, C. A., Smith, D., Vaughan, R., & Gray, S. (1996). Diversity among isolates within the PAV serotype of barley yellow dwarf virus. Phytopathology, 86, 370–377.

    Article  CAS  Google Scholar 

  • Chen, M. -H., Sheng, J., Hind, G., Handa, A. K., & Citovsky, V. (2000). Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. The EMBO Journal, 19, 913–920.

  • Chen, M. -H., Tian, G. -W., Gafni, Y., & Citovsky, V. (2005). Effects of calreticulin on viral cell-to-cell movement. Plant Physiology, 138, 1866–1876.

  • Cheng, S. L., Domier, L. L., & D'Arcy, C. J. (1994). Detection of the readthrough protein of barley yellow dwarf virus. Virology, 202(2), 1003–1006.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Z., He, X., Wu, M., Zhou, G., Keese, P., & Waterhouse, P. (1996). Nucleotide sequence of coat protein gene for GPV isolate of barley yellow dwarf virus and construction of expression plasmid for plant. Science in China Series C Life Sciences-English Edition, 39, 534–543.

    CAS  Google Scholar 

  • Chougule, N. P., & Bonning, B. C. (2012). Toxins for transgenic resistance to hemipteran pests. Toxins (Basel), 4, 405–429.

    Article  CAS  Google Scholar 

  • Cilia, M., Tamborindeguy, C., Fish, T., Howe, K., Thannhauser, T. W., & Gray, S. (2011). Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. Journal of Virology, 85, 2148–2166.

    Article  PubMed  CAS  Google Scholar 

  • Comeau, A. (1987). Effects of BYDV inoculations at various dates in oats, barley, wheat, rye and triticale. Phytoprotection, 68, 97–109.

    Google Scholar 

  • Comeau, A., & Dubuc, J. P. (1977). Observations on the 1976 barley yellow dwarf epidemic in eastern Canada. Canadian Plant Disease Survey, 57, 42–44.

    Google Scholar 

  • Conti, M., D’Arcy, C. J., & Jedlinski, H. (1987). The “yellow plague” of cereals, barley yellow dwarf virus. Pp. 1-6. In: World perspectives on barley yellow dwarf. Burnett, P. A.(eds.) 91-013855, CIMMYT.

  • Creamer, R., & Falk, B. W. (1990). Direct detection of transcapsidated barley yellow dwarf luteoviruses in doubly infected plants. Journal of General Virology, 71, 211–217.

    Article  CAS  Google Scholar 

  • D’Arcy, J. (1995). Symptomatology and host range of barley yellow dwarf. In: Barley yellow dwarf: Forty years of progress. D’Arcy, J. & Burnett, P., 107–127, APS Press, St. Paul.

  • de Vos, M., & Jander, G. (2010). Volatile communication in plant-aphid interactions. Current Opinion in Plant Biology, 13, 366–371.

    Article  PubMed  CAS  Google Scholar 

  • DeBlasio, S. L., Johnson, R., Mahoney, J., Karasev, A., Gray, S. M., MacCoss, M. J., & Cilia, M. (2014). Insights into the polerovirus-plant interactome revealed by co-immunoprecipitation and mass spectrometry. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-11-14-0363-R

  • Dietrich, C., & Maiss, E. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. Journal of General Virology, 84, 2871–2876.

    Article  PubMed  CAS  Google Scholar 

  • Domier, L. L. (2009). Barley yellow dwarf viruses. In M. H. V. V. Regenmortel (Ed.), Mahy, B. W. J (pp. 279–285). Desk Encyclopedia of Plant and Fungal Virology: Elsevier.

    Google Scholar 

  • Domier, L. L. (2011). Family Luteoviridae. Pp, 1045–1053. In: Virus Taxonomy – Classification and Nomenclature of Viruses. Ninth report of the International Committee on Taxonomy of Viruses. King, A. M. Q., Adams, M. J., Carsten, E. B., & Lefkowitz, E. J. (Eds), Elsevier.

  • Domier, L. L., McCoppin, N. K., Larsen, R. C., & D’Arcy, C. J. (2002). Nucleotide sequence shows that Bean leafroll virus has a luteovirus-like genome organization. Journal of General Virology, 83, 1791–1798.

    Article  PubMed  CAS  Google Scholar 

  • Du, Z. Q., Li, L., Liu, L., Wang, X., & Zhou, G. (2007). Evaluation of aphid transmission abilities and vector transmission phenotypes of barley yellow dwarf viruses in China. Journal of Plant Pathology, 89, 251–259.

    CAS  Google Scholar 

  • Eamens, A., Wang, M. B., Smith, N. A., & Waterhouse, P. M. (2008). RNA silencing in plants: Yesterday, today, and tomorrow. Plant Physiology, 147, 456–468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabre, F., Dedryver, C., Leterrier, J., & Plantegenest, M. (2003). Aphid abundance on cereals in autumn predicts yield losses caused by barley yellow dwarf virus. Phytopathology, 93, 1217–1222.

    Article  PubMed  CAS  Google Scholar 

  • Fabre, F., Plantegenest, M., Mieuzet, L., Dedryver, C. A., Leterrier, J. -L., & Jacquot, E. (2005). Effects of climate and land use on the occurrence of viruliferous aphids and the epidemiology of barley yellow dwarf disease. Agriculture, Ecosystems and Environment, 106, 49–55.

  • Fiebig, M., Poehling, H. M., & Borgemeister, C. (2004). Barley yellow dwarf virus, wheat, and Sitobion avenae: A case of trilateral interactions. Entomologia Experimentalis et Applicata, 110, 11–21. https://doi.org/10.1111/j.0013-8703.2004.0015.x

    Article  Google Scholar 

  • Filichkin, S. A., Lister, R. M., McGrath, P. F., & Young, M. J. (1994). In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology, 205(1), 290–299.

    Article  PubMed  CAS  Google Scholar 

  • Filichkin, S. A., Brumfield, S., Filichkin, T. P., & Young, M. J. (1997). In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. Journal of Virology, 71, 569–577.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Folimonova, S. Y. (2012). Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. Journal of Virology, 86, 5554–5561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garret, A., Kerlan, C., & Thomas, D. (1993). The intestine is a site of passage for potato leafroll virus from the gut lumen into the haemocoel in the aphid vector, Myzus persicae Sulz. Archives of Virology, 131, 377–392.

    Article  PubMed  CAS  Google Scholar 

  • Garret, A., Kerlan, C., & Thomas, D. (1996). Ultrastructural study of acquisition and retention of potato leafroll luteovirus in the alimentary canal of its aphid vector, Myzus persicae Sulz. Archives of Virology, 141, 1279–1292.

    Article  PubMed  CAS  Google Scholar 

  • Gildow, F., Damsteegt, V., Stone, A., Smith, O., & Gray, S. (2000). Virus-vector cell interactions regulating transmission specificity of soybean dwarf Luteoviruses. Journal of Phytopathology, 148, 333–342.

    Article  Google Scholar 

  • Gill, C., & Chong, J. (1975). Development of the infection in oat leaves inoculated with barley yellow dwarf virus. Virology, 66, 440–453.

    Article  PubMed  CAS  Google Scholar 

  • Goldbach, R., Wellink, J., Ververl, J., van Kammen, A., Kasteel, D., & van Lent, J. (1994). Adaptation of positive stranded RNA viruses to plants. Archives of Virology [Supplementum], 9, 87–97.

    CAS  Google Scholar 

  • Gray, S. M., & Banerjee, N. (1999). Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 63, 128–148.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gray, S. M., & Gildow, F. E. (2003). Luteovirus-aphid interactions. Annual Review of Phytopathology, 41, 539–566.

    Article  PubMed  CAS  Google Scholar 

  • Gray, S. M., Cilia, M., & Ghanim, M. (2014a). Circulative, nonpropagative virus transmission: An orchestra of virus, insect and plant derived instruments. Advances in Virus Research, 89, 141–199.

    Article  PubMed  CAS  Google Scholar 

  • Gray, S., Cilia, M., & Ghanim, M. (2014b). Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Advances in Virus Research, 89, 141–199.

    Article  PubMed  CAS  Google Scholar 

  • Guo, L., Allen, E., & Miller, W. A. (2000). Structure and function of a cap-independent translation element that functions in either the 3′ or the 5′ untranslated region. RNA, 6, 1808–1820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, L., Allen, E., & Miller, W. A. (2001). Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Molecular Cell, 7, 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez, S., Michalakis, Y., Van Munster, M., & Blanc, S. (2013). Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses. Functional Ecology, 27, 610–622.

    Article  Google Scholar 

  • Hall, G. (2006). Selective constraint and genetic differentiation in geographically distant barley yellow dwarf virus populations. Journal of General Virology, 87, 3067–3075.

    Article  PubMed  CAS  Google Scholar 

  • Hall, G., Peters, J., Little, D., & Power, A. (2010). Plant community diversity influences vector behaviour and barley yellow dwarf virus population structure. Plant Pathology, 59, 1152–1158.

    Article  Google Scholar 

  • Henry, M., & Dedryver, C. (1991). Occurrence of barley yellow dwarf virus in pastures of western France. Plant Pathology, 40, 93–99.

    Article  Google Scholar 

  • Henry, M., van Ginkel, M., & Khairallah, M. (2001). Marker-assisted selection for BYDV resistance in wheat. CIMMYT wheat. Program, 41.

  • Hesketh, E. L., Meshcheriakova, Y., Dent, K. C., Saxena, P., Thompson, R. F., Cockburn, J. J., Lomonossoff, G. P., & Ranson, N. A. (2015). Mechanisms of assembly and genome packaging in an RNA virus revealed by high-resolution cryo-EM. Nature Communications, 6, 10113. https://doi.org/10.1038/ncomms10113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359. https://doi.org/10.1146/annurev.phyto.022508.092135

    Article  PubMed  CAS  Google Scholar 

  • Hu, J., Rochow, W., Palukaitis, P., & Dietert, R. (1988). Phenotypic mixing: Mechanism of dependent transmission for two related isolates of barley yellow dwarf virus. Phytopathology, 78, 1326–1330.

    Article  Google Scholar 

  • Igori, D., Lim, S., Baek, D., Cho, I. S., & Moon, J. S. (2017). Complete nucleotide sequence of a highly divergent cherry-associated luteovirus (ChALV) isolate from peach in South Korea. Archives of Virology. https://doi.org/10.1007/s00705-017-3418-x

  • Ingwell, L. L., Eigenbrode, S. D., & Bosque-Pérez, N. A. (2012). Plant viruses alter insect behavior to enhance their spread. Scientific Reports, 2. https://doi.org/10.1038/srep00578

  • Jedlinski, H., Rochow, W., & Brown, C. (1977). Tolerance to barley yellow dwarf virus in oats. Phytopathology, 67, 1408–1411.

    Article  Google Scholar 

  • Jeger, M., Chen, Z., Cunningham, E., Martin, G., & Powell, G. (2012). Population biology and epidemiology of plant virus epidemics: From tripartite to tritrophic interactions. European Journal of Plant Pathology, 133, 3–23.

    Article  Google Scholar 

  • Jensen, S. (1968). Photosynthesis respiration and other physiological relationships in barley infected with barley yellow dwarf virus. Phytopathology, 58, 204–208.

    Google Scholar 

  • Jensen, S., Fitzgerald, P., & Thysell, J. (1971). Physiology and field performance of wheat infected with barley yellow dwarf virus. Crop Science, 11, 775–780.

    Article  Google Scholar 

  • Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., & Zemetra, R. S. (2004a). Life history of the bird cherry-oat aphid, Rhopalosipum padi (Homoptera, Aphididae), on transgenic and untransformed wheat challenged with barley yellow dwarf virus. Journal of Economic Entomology, 97, 203–212.

    Article  PubMed  Google Scholar 

  • Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemetra, R. S., Ding, H., & Eigenbrode, S. D. (2004b). Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to barley yellow dwarf virus-infected transgenic and untransformed wheat. Environmental Entomology, 33, 1207–1216.

    Article  Google Scholar 

  • Jones, R., McKirdy, S., & Shivas, R. (1990). Occurrence of barley yellow dwarf viruses in over-summering grasses and cereal crops in Western Australia. Australasian Plant Pathology, 19, 90–96.

    Article  Google Scholar 

  • Kakeda, K., & Ishikawa, H. (1991). Molecular chaperon produced by an intracellular symbiont. Journal of Biochemistry, 110, 583–587.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, T., & Connery, J. (2005). Grain yield reductions in spring barley due to Barley yellow dwarf virus and aphid feeding. Irish Journal of Agriculure and Food Research, 44(1), 111–128.

    Google Scholar 

  • Koev, G., & Miller, W. A. (2000). A positive strand RNA virus with three very different subgenomic RNA promoters. Journal of Virology, 74(13), 5988–5996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koev, G., Mohan, B., Dinesh-Kumar, S., Torbert, K. A., Somers, D. A., & Miller, W. A. (1998). Extreme reduction of disease in oats transformed with the 5'half of the barley yellow dwarf virus-PAV genome. Phytopathology, 88, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Krizbai, K., Kriston, E., Kreuze, J., & Melika, G. (2017). Identification of Nectarine stem-pitting associated virus infeccting Prunus persica in Hungary. New Disease Reports, 35, 18. https://doi.org/10.5197/j.2044-0588.2017.035.018

    Article  Google Scholar 

  • Krueger, E. N., Beckett, R. J., Gray, S. M., & Miller, W. A. (2013). The complete nucleotide sequence of the genome of barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2013.00205

  • Kundu, J., Jarošová, J., Gadiou, S., & Cervená, G. (2009). Discrimination of three BYDV species by one-step RT-PCR-RFLP and sequence based methods in cereal plants from the Czech Republic. Cereal Research Communications, 37, 541–550.

    Article  CAS  Google Scholar 

  • Kupper, M., Gupta, S. K., Feldhaar, H., & Gross, R. (2014). Versatile roles of the chaperonin GroEL in microorganism–insect interactions. FEMS Microbiology Letters, 353, 1–10. https://doi.org/10.1111/1574-6968.12390

    Article  PubMed  CAS  Google Scholar 

  • Larkin, P., Young, M., Gerlach, W., & Waterhouse, P. (1991). The Yd2 resistance to barley yellow dwarf virus is effective in barley plants but not in their leaf protoplasts. Annals of Applied Biology, 118, 115–125.

    Article  Google Scholar 

  • Larkin, P., Kleven, S., & Banks, P. (2002). Utilizing Bdv2, the Thinopyrum intermedium source of BYDV resistance, to develop wheat cultivars. In M. Henry & A. McNab (Eds.), Recent advances and future strategies (pp. 60–63). CIMMYT Texcoco: Mexico.

    Google Scholar 

  • Lefèvre, T., & Thomas, F. (2008). Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infection Genetics and Evolution, 8, 504–519.

    Article  Google Scholar 

  • Lenz, O., Přibylová, J., Koloniuk, I., & Špak, J. (2016). Identification and characterization of a new member of the genus Luteovirus from cherry. Archives of Virology. https://doi.org/10.1007/s00705-016-3125-z

  • Linz, L. B., Liu, S., Chougule, N. P., & Bonning, B. C. (2015). In vitro evidence supports membrane alanyl aminopeptidase N as a receptor for a plant virus in the pea aphid vector. Journal of Virology. https://doi.org/10.1128/JVI.01479-15

  • Liu, K., Xia, Z., Zhang, Y., Wen, Y., Wang, D., Brandenburq, K., Harris, F., & Phoenix, D. A. (2005). Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: Role of a putative amphiphilic alpha-helix at the N-terminus of the movement protein. Biopolymers, 79, 86–96.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Wang, X., Liu, Y., Xie, J., Gray, S., Zhou, G., & Gao, B. (2007). A Chinese isolate of Barley yellow dwarf virus-PAV represents a third distinct species within the PAV serotype. Archives of Virology, 152, 1365–1373.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Sivakumar, S., Sparks, W. O., Miller, W. A., & Bonning, B. C. (2010). A peptide that binds the pea aphid gut impedes entry of pea enation mosaic virus into the aphid hemocoel. Virology, 401, 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Zhai, H., Zhao, K., Wu, B., & Wang, X. (2012). Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae. Journal of General Virology, 93, 1825–1830.

    Article  PubMed  CAS  Google Scholar 

  • Lu, M. G., Zhang, C., Zhang, Z. X., Wang, C. A., & Li, S. F. (2017). Nectarine stem-pitting-associated virus detected in peach trees in China. Plant Disease, 101, 513. https://doi.org/10.1094/PDIS-09-16-1256-PDN

    Article  Google Scholar 

  • Luan, J. B., Li, J. M., Varela, N., Wang, Y. L., Li, F. F., Bao, Y. Y., Zhang, C. X., Liu, S. S., & Wang, X. W. (2011). Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. Journal of Virology, 85, 3330–3340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucas, W. J. (2006). Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology, 344(1), 169–184. https://doi.org/10.1016/j.virol.2005.09.026

    Article  PubMed  CAS  Google Scholar 

  • Maia, I. G., Gonclaves, M. C., Arruda, P., & Vega, J. (2000). Molecular evidence that Sugarcane yellow leaf virus (ScYLV) is a member of the Luteoviridae family. Archives of Virology, 145, 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  • Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A., & Cook, M. A. (2007). Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illustrate historical disease ecology of invasive and native grasses. Journal of Ecology, 95, 1153–1166.

    Article  CAS  Google Scholar 

  • Malmstrom, C. M., Melcher, U., & Bosque-Pérez, N. A. (2011). The expanding field of plant virus ecology, historical foundations, knowledge gaps, and research directions. Virus Research, 159, 84–94.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M. A., & Mosher, R. A. (2014). RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nature Reviews Genetics. https://doi.org/10.1038/nrg3683

  • Mauck, K. E., DeMoraes, C. M., & Mescher, M. C. (2010a). Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of National Academy of Sciences, 107, 3600–3605.

    Article  Google Scholar 

  • Mauck, K. E., DeMoraes, C. M., & Mescher, M. C. (2010b). Effects of cucumber mosaic virus infection on vector and non-vector herbivores of squash. Communicative and Integrative Biology, 3, 579–582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauck, K., Bosque-Pérez, N. A., Eigenbrode, S. D., DeMoraes, C. M., & Mescher, M. C. (2012). Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Functional Ecology, 26, 1162–1175.

    Article  Google Scholar 

  • Mayo, M., & d’Arcy, C. (1999). Family Luteoviridae: a reclassification of luteoviruses. In: The Luteoviridae (pp. 15–22). CABI Publishing, Wallingford

  • McGrath, P., Vincent, J., Lei, C. -H., Pawlowski, W., Torbert, K., Gu, W., Kaeppler, H., Wan, Y., Lemaux, P., & Rines, H. (1997). Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. European Journal of Plant Pathology, 103, 695–710.

  • McKirdy, S., Jones, R., & Nutter Jr., F. (2002). Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Disease, 86, 769–773.

    Article  Google Scholar 

  • McMenemy, L. S., Hartley, S. E., MacFarlane, S. A., Karley, A. J., Shepherd, T., & Johnson, S. N. (2012). Raspberry viruses manipulate the behaviour of their insect vectors. Entomologia Experimentalis et Applicata, 144, 56–68.

    Article  CAS  Google Scholar 

  • Medina-Ortega, K. J., Bosque-Perez, N. A., Ngumbi, E., Jiménez-Martínez, E. S., & Eigenbrode, S. D. (2009). Rhopalosiphum padi (Hemiptera, Aphididae) responses to volatile cues from Barley yellow dwarf virus–infected wheat. Environmental Entomology, 38, 836–845.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W. A., & Rasochová, L. (1997). Barley yellow dwarf viruses. Annual Review of Phytopathology, 35, 167–190.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W. A., & White, K. A. (2006). Long-distance RNA-RNA interacions in plant virus gene expression and replication. Annual Review of Phytopathology, 44, 447–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller, W. A., Dinesh-Kumar, S., & Paul, C. P. (1995). Luteovirus gene expression. Critical Reviews in Plant Sciences, 14(3), 179–211.

    Article  CAS  Google Scholar 

  • Miller, W. A., Liu, S., & Beckett, R. (2002). Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Molecular Plant Pathology, 3, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W. A., Jackson, J., & Feng, Y. (2015). Positive strand RNA virus replication: It depends on the ends. Virus Research, 206, 37–45. https://doi.org/10.1016/j.virusres.2015.03.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montllor, C. B., & Gildow, F. E. (1986). Feeding responses of two grain aphids to barley yellow dwarf virus -infected oats. Entomologia Experimentalis et Applicata, 42, 63–69.

    Article  Google Scholar 

  • Moonan, F., Molina, J., & Mirkov, T. E. (2000). Sugarcane yellow leaf virus: An emerging virus that has evolved by recombination luteoviral and poleroviral ancestors. Virology, 269, 156–171.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, A., Garzo, E., Fernandez-Mata, G., Kassem, M., Aranda, M. A., & Fereres, A. (2011). Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomologia Experimentalis et Applicata, 139(2), 145–153.

    Article  Google Scholar 

  • Mukhopadhyay, S. (2011). Plant Virus. Vector: Epidemiology and Management. Science Publishers.

    Google Scholar 

  • Nass, P. H., Jakstys, B. P., & D'Arcy, C. J. (1995). In situ localization of barley yellow dwarf virus coat protein in oats. Phytopathology, 85, 556–560.

    Article  Google Scholar 

  • Nass, P. H., Domier, L. L., Jakstys, B. P., & D'Arcy, C. J. (1998). In Situ localization of Barley yellow dwarf virus-PAV 17-kDa protein and nucleic acids in oats. Phytopathology, 88(10), 1031–1039.

    Article  PubMed  CAS  Google Scholar 

  • Oparka, K. J. (2004). Getting the message across: How do plant cells exchange macromolecular complexes? Trends in Plant Science, 9, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Ordon, F., Habekuss, A., Kastirr, U., Rabenstein, F., & Kühne, T. (2009). Virus resistance in cereals: Sources of resistance, genetics and breeding. Journal of Phytopathology, 157, 535–545.

    Article  Google Scholar 

  • Oswald, J. W., & Houston, B. (1953). The yellow-dwarf virus disease of cereal crops. Phytopathology, 43, 128–136.

    Google Scholar 

  • Pal, N., Yamamoto, T., King, G. F., Waine, C., & Bonning, B. C. (2013). Aphicidal efficacy of scorpion- and spider-derived neurotoxins. Toxicon, 70, 114–122.

    Article  PubMed  CAS  Google Scholar 

  • Pallas, V., & Garcia, J. A. (2011). How do plant viruses induce disease? Interactions and interference with host components. Journal of General Virology, 92, 2691–2705.

    Article  PubMed  CAS  Google Scholar 

  • Pazhouhandeh, M., Dieterle, M., Marrocco, K., Lechner, E., Berry, B., Brault, V., Hemmer, O., Kretsch, T., Richards, K., Genschik, P., & Ziegler-Graff, V. (2006). F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proceedings of National Academy of Sciences, 103, 1994–1999.

    Article  CAS  Google Scholar 

  • Perry, K. L., Kolb, F. L., Sammons, B., Lawson, C., Cisar, G., & Ohm, H. (2000). Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology, 90, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Peter, K. A., Gildow, F., Palukaitis, P., & Gray, S. M. (2009). The C terminus of the Polerovirus p5 readthrough domain limits virus infection to the phloem. Journal of Virology, 83(11), 5419–5429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinheiro, P. V., Ghanim, M., Alexander, M., Rebelo, A. R., Santos, R. S., Orsburn, B. C., Gray, S., & Cilia, M. (2016). Host plants indirectly influence plant virus transmission by altering gut cysteine protease activity of aphid vectors. Molecular and Cellular Proteomics. https://doi.org/10.1074/mcp.M116.063495

  • Ponzio, C., Gols, R., Pieterse, C. M. J., & Dicke, M. (2013). Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology, 27, 587–598.

    Article  Google Scholar 

  • Poulin, R. (1995). Adaptive changes in the behaviour of parasitized animals: A critical review. International Journal of Parasitology, 25, 1371–1383.

    Article  PubMed  CAS  Google Scholar 

  • Poulin, R. (2010). Parasite manipulation of host behavior: An update and frequently asked questions. In: Brockmann, H.J., Roper, T.J., Naguib, M., WynneEdwards, K.E., Mitani, J.C., & Simmons, L.W. (Eds.), Advances in the Study of Behavior, Academic Press, 41, 151–186.

  • Power, A., & Gray, S. (1995). Aphid transmission of barley yellow dwarf viruses: Interactions between viruses, vectors, and host plants. In: Barley Yellow Dwarf, 40, 259–289.

  • Rajabaskar, D., Bosque-Pérez, N. A., & Eigenbrode, S. D. (2013a). Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Research. https://doi.org/10.1016/j.virusres.2013.11.005

  • Rajabaskar, D., Ding, H., Wu, Y., & Eigenbrode, S. D. (2013b). Different reactions of potato varieties to infection by potato leafroll virus, and associated responses by its vector, Myzus persicae (Sulzer). Journal of Chemical Ecology. https://doi.org/10.1007/s10886-013-0311-2

  • Rajabaskar, D., Wu, Y., Bosque-Pérez, N. A., & Eigenbrode, S. D. (2013c). Dynamics of Myzus persicae arrestment by volatiles from potato leafroll virus-infected potato plants during disease progression. Entomologia Experimentalis et Applicata, 148, 172–181.

    Article  Google Scholar 

  • Rana, V. S., Singh, S. T., Gayatri Priya, N., Kumar, J., & Rajagopal, R. (2012). Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. Tabaci. PLoS One, 7(8), e42168. https://doi.org/10.1371/journal.pone.0042168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rathjen, J. P., Karageorgos, L. E., Habili, N., Waterhouse, P. M., & Symons, R. H. (1994). Soybean dwarf luteovirus contains the third variant genome type in the luteovirus group. Virology, 198, 671–679.

    Article  PubMed  CAS  Google Scholar 

  • Reinbold, C., Gildow, F. E., Herrbach, E., Ziegler-Graff, V., Gonclaves, M. C., van den Heuvel, J. F. J. M., & Brault, V. (2001). Studies on the role of the minor capsid protein in transport of beet western yellows virus through Myzus persicae. Journal of General Virology, 82(8), 1995–2007. https://doi.org/10.1099/0022-1317-82-8-1995

    Article  PubMed  CAS  Google Scholar 

  • Riedell, W. E., Kieckhefer, R. W., Langham, M. A., & Hesler, L. S. (2003). Root and shoot responses to bird cherry-oat aphids and in spring wheat. Crop Science, 43, 1380–1386.

    Article  Google Scholar 

  • Rochow, W., & Muller, I. (1971). A fifth variant of barley yellow dwarf virus in New York. Plant Disease Reporter, 55, 874–877.

    Google Scholar 

  • Roosien, B. K., Gomulkiewicz, R., Ingwell, L. L., Bosque-Pérez, N. A., Rajabaskar, D., & Eigenbrode, S. D. (2013). Conditional vector preference aids the spread of plant pathogens: Results from a model. Environmental Entomology. https://doi.org/10.1603/EN13062

  • Salem, N. M., Miller, W. A., Rowhani, A., Golino, D. A., Moyne, A. L., & Falk, B. W. (2008). Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus. Virology, 375, 354–360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seabloom, E. W., Borer, E. T., Jolles, A., & Mitchell, C. E. (2009). Direct and indirect effects of viral pathogens and the environment on invasive grass fecundity in Pacific coast grasslands. Journal of Ecology, 97, 1264–1273.

    Article  Google Scholar 

  • Sharma, H., Gill, B., & Uyemoto, J. (1984). High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Journal of Phytopathology, 110, 143–147.

    Article  Google Scholar 

  • Shen, R., & Miller, W. A. (2004). Subgenomic RNA as a riboregulator: Negative regulation of RNA replication by barley yellow dwarf virus subgenomic RNA 2. Virology, 327, 196–205.

    Article  PubMed  CAS  Google Scholar 

  • Shen, R., Rakotondrafara, A. M., & Miller, W. A. (2006). Trans regulation of cap-independent translation by a viral subgenomic RNA. Journal of Virology, 80(20), 10045–10054. https://doi.org/10.1128/JVI.00991-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman, M. P., de Noronha, C. M. C., Heusch, M. I., Greene, S., & Greene, W. C. (2001). Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. Journal of Virology, 75, 1522–1532. https://doi.org/10.1128/JVI.75.3.1522-1532.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla, A. K., Upadhyay, S. K., Mishra, M., Saurabh, S., Singh, R., Singh, H., Thakur, N., Rai, P., Pandey, P., Hans, A. L., Srivastava, S., Rajapure, V., Yadav, S. K., Singh, M. K., Kumar, J., Chandrashekar, K., Verma, P. C., Singh, A. P., Nair, K. N., Bhadauria, S., Wahajuddin, M., Singh, S., Sharma, S., Omkar, Upadhyay, R. S., Ranade, S. A., Tuli, R., & Singh, P. K. (2016). Expression of an insecticidal fern protein in cotton protects against whitefly. Nature Biotechnology. https://doi.org/10.1038/nbt.3665

  • Simon, A. E., & Miller, W. A. (2013). 3′ cap-independent translation enhancers of plant viruses. Annual Review of Microbiology, 67,(21). https://doi.org/10.1146/annurev-micro-092412-155609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, M., & Singh, J. (2012). Seed development-related expression of ARGONAUTE4_9 class of genes in barley: possible role in seed dormancy. Euphytica, 188, 123–129.

    Article  CAS  Google Scholar 

  • Singh, M., Singh, S., Randhawa, H., & Singh, J. (2013). Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_9 class is associated with pre-harvest sprouting in wheat (Triticum aestivum L.) PLos One, 8(10), e77009. https://doi.org/10.1371/journal.ppat.1004868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smirnova, E., Firth, A. E., Miller, W. A., Scheidecker, D., Brault, V., Reinbold, C., Rakotondrafara, A. M., Chung, B. Y. -W., & Ziegler-Graff, V. (2015). Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathogens, 11(5), e1004868. https://doi.org/10.1371/journal.ppat.1004868

  • Smith, H. C. (1967). The effect of aphid numbers and stage of plant growth in determining tolerance to barley yellow dwarf virus in cereals. New Zealand Journal of Agricultural Research, 10, 445–466.

    Article  Google Scholar 

  • Smith, G. R., Borg, Z., Lockhart, B. E. L., Braithwaite, K. S., & Gibbs, M. J. (2000). Sugarcane yellow leaf virus: A novel member of the Luteoviridae that probably arose by inter-species recombination. Journal of General Virology, 81, 1865–1869.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, R., Alvarez, J. M., Eigenbrode, S. D., & Bosque-Pérez, N. A. (2006). Influence of hairy nightshade Solanum sarrachoides (Sendtner) and Potato leafroll virus (Luteoviridae: Polerovirus) on the host preference of Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology, 35, 546–553.

    Article  Google Scholar 

  • Sward, R., & Lister, R. (1988). The identity of barley yellow dwarf virus isolates in cereals and grasses from mainland Australia. Crop and Pasture Science, 39, 375–384.

    Article  Google Scholar 

  • Tacke, E., Schmitz, J., Prufer, D., & Rohde, W. (1993). Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic α-helix as the domain for protein/protein interactions. Virology, 197(1), 274–282.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., Sugawara, T., Yamatsuta, T., Isogai, M., Natsuaki, T., & Yoshikawa, N. (2007). Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow fluorescent proteins in coinfected plants. Phytopathology, 97, 1200–1206.

    Article  PubMed  CAS  Google Scholar 

  • Tamada, T., & Harrison, B. D. (1981). Quantitative studies on the uptake and retention of potato leafroll virus by aphids in laboratory and field conditions. Annals of Applied Biology, 98, 261–276.

    Article  Google Scholar 

  • Terauchi, H., Kanematsu, S., Honda, K., Mikoshiba, Y., Ishiguro, K., & Hidaka, S. (2001). Comparison of complete nucleotide sequences of genomic RNAs of four soybean dwarf virus strains that differ in their vector specificity and symptom production. Archives of Virology, 146, 1885–1898.

    Article  PubMed  CAS  Google Scholar 

  • Thackray, D., Hawkes, J., & Jones, R. (2001). Further developments in forecasting aphid and virus risk in cereals. In R. Jettner & J. Johns (Eds.), Western Australian annual crop updates–cereals (pp. 67–69). Perth: Agriculture Western Australia.

    Google Scholar 

  • Tjallingii, W. F. (2006). Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany, 57(4), 739–745.

    Article  PubMed  CAS  Google Scholar 

  • Tjallingii, W. F., & Esch, T. H. (1993). Fine structure of the stylet route in plant tissues by some aphids. Physiological Entomology, 18, 317–328.

    Article  Google Scholar 

  • Torrance, L. (1992). Analysis of epitopes on potato leafroll virus capsid protein. Virology, 191, 485–489.

    Article  PubMed  CAS  Google Scholar 

  • Tougou, M., Furutani, N., Yamagishi, N., Shizukawa, Y., Takahata, Y., & Hidaka, S. (2006). Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus. Plant Cell Reports, 25, 1213–1218.

    Article  PubMed  CAS  Google Scholar 

  • Treder, K., Kneller, E. L. P., Allen, E. M., Wang, Z., Browning, K. S., & Miller, W. A. (2008). The 3′ cap-independent translation element of barley yellow dwarf virus binds eIF4F via the eIF4G subunit to initiate translation. RNA, 14, 134–147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trzmiel, K. (2006). Barley yellow dwarf virus-MAV (BYDV-MAV) and Barley yellow dwarf virus-PAV (BYDV-PAV) on maize in Poland. Phytopathologia Polonica, 53–56.

  • van Bel, A. (2003). The phloem, a miracle of ingenuity. Plant, Cell and Environment, 26, 125–149.

    Article  Google Scholar 

  • van den Heuvel, J., Verbeek, M., & Van der Wilk, F. (1994). Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. Journal of General Virology, 75, 2559–2565.

    Article  PubMed  Google Scholar 

  • Villamor, D. E. V., Mekuria, T. A., Pillai, S. S., & Eastwell, K. C. (2016). High-throughput sequencing identifies novel viruses in nectarine: Insights to the etiology of stem-pitting disease. Phytopathology, 106, 519–527. https://doi.org/10.1094/PHYTO-07-15-0168-R

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. Y., Chay, C., Gildow, F. E., & Gray, S. M. (1995). Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology, 206(2), 954–962.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M. -B., Cheng, Z., Keese, P., Graham, M., Larkin, P., & Waterhouse, P. (1998). Comparison of the coat protein, movement protein and RNA polymerase gene sequences of Australian, Chinese, and American isolates of barley yellow dwarf virus transmitted by Rhopalosiphum padi. Archives of Virology, 143, 1005–1013.

  • Wang, M. -B., Abbott, D. C., & Waterhouse, P. M. (2000). A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology, 1, 347–356.

  • Wang, X., Chang, S., Jin, Z., Li, L., & Zhou, G. (2001). Nucleotide sequences of the coat protein and readthrough protein genes of the Chinese GAV isolate of barley yellow dwarf virus. Acta Virologica, 45, 249.

    PubMed  CAS  Google Scholar 

  • Wang, X., Liu, Y., Chen, L., Zhao, D., Wang, X., & Zhang, Z. (2013). Wheat resistome in response to barley yellow dwarf virus infection. Functional and Integrative Genomics, 1–11.

  • Wang, H., Wu, K., Liu, Wu, Y., & Wang, X. (2015). Integrative proteomics to understand the transmission mechanism of barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi. Scientific Reports, 5, 10971, doi:https://doi.org/10.1038/srep10971.

  • Waziri, H., El Gaffar, M. A., Allam, E., & El Din, A. G. (2002). Coat protein sequence of an Egyptian BYDV-PAV isolate (p. 97). Barley Yellow Dwarf Disease: Recent Advances and Future Strategies.

    Google Scholar 

  • Webster, B. (2012). The role of olfaction in aphid host location. Physiological Entomology, 37, 10–18.

    Article  Google Scholar 

  • Werner, B. J., Mowry, T. M., Bosque-Pérez, N. A., Ding, H., & Eigenbrode, S. D. (2009). Changes in green peach aphid responses to potato leafroll virus-induced volatiles emitted during disease progression. Environmental Entomology, 38, 1429–1438.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield, A. E., Falk, W. B., & Rotenberg, D. (2015). Insect vector-mediated transmission of plant viruses. Virology, 479, 278–289. https://doi.org/10.1016/j.virol.2015.03.026

    Article  PubMed  CAS  Google Scholar 

  • Wu, B., Blanchard-Letort, A., Liu, Y., Zhou, G., Wang, X., & Elena, S. F. (2011). Dynamics of molecular evolution and phylogeography of barley yellow dwarf virus-PAV. PLoS One, 6, e16896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia, Z., Cao, R., Sun, K., & Zhang, H. (2012). The movement protein of barley yellow dwarf virus-GAV self-interacts and forms homodimers in vitro and in vivo. Archives of Virology, 157, 1233–1239.

    Article  PubMed  CAS  Google Scholar 

  • Xifeng, W., & Guanghe, Z. (2003). Identification of a protein associated with circulative transmission of Barley yellow dwarf virus from cereal aphids, Schizaphis graminum and Sitobion avenae. Chinese Science Bulletin, 48, 2083–2087. https://doi.org/10.1360/03wc0153

    Article  CAS  Google Scholar 

  • Yang, X., Thannhauser, T. W., Burrows, M., Cox-Foster, D., Gildow, F. E., & Gray, S. M. (2008). Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (Luteoviridae). Journal of Virology, 82(1), 291–299. https://doi.org/10.1128/JVI.01736-07

    Article  PubMed  CAS  Google Scholar 

  • Yébenes, H., Mesa, P., Muñoz, I. G., Montoya, G., & Valpuesta, J. M. (2011). Chaperonins: Two rings for folding. Trends in Biochemical Sciences, 36(8), 424–432. https://doi.org/10.1016/j.tibs.2011.05.003

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, K., Matsushita, Y., Kasahara, M., Konagaya, K. -I., & Nyunoya, H. (2004). Interaction of tomato mosaic virus movement protein with tobacco RIO kinase. Molecules and Cells, 17, 223–229.

  • Yu, W., Xu, Z., Francis, F., Liu, Y., Cheng, D., Bragard, C., & Chen, J. (2013). Variation in the transmission of Barley yellow dwarf virus PAV by different Sitobean avenae clones in China. Journal of Virological Methods, 194, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z. Y., Xin, Z. Y., Chen, X., Qian, Y. T., Lin, Z. S., Xu, H. J., & Ma, Y. Z. (2000). Molecular cytogenetic characterization of a new wheat line YW443 with resistance to barley yellow dwarf virus. Acta Genetica Sinica, 27, 614–620.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Lin, Z., & Xin, Z. (2009). Research progress in BYDV resistance genes derived from wheat and its wild relatives. Journal of Genetics and Genomics, 36, 567–573.

    Article  PubMed  CAS  Google Scholar 

  • Ziebell, H., Murphy, A. M., Groen, S. C., Tungadi, T., Westwood, J. H., Lewsey, M. G., Moulin, M., Kleczkowski, A., Smith, A. G., Stevens, M., Powell, G., & Carr, J. P. (2012). Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Scientific Reports, 1, 187.

    Article  CAS  Google Scholar 

  • Ziegler-Graff, V., & Brault, V. (2008). Role of vector-transmission proteins. Methods in Molecular Biology, 451, 81–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Ms. Anup Randhawa for the manuscript proofreading. Helpful comments by anonymous reviewers of this manuscript are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaswinder Singh.

Ethics declarations

Competing interests

All authors declared that no financial or other conflicting interests exist.

Ethical approval

This article does not contain any study with human participants or animals, performed by any of the authors.

Informed consent

All authors read and approved the manuscript.

Electronic supplementary material

ESM 1

(JPEG 4103 kb)

ESM 2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Anwar, S., Shuja, M.N. et al. The genus Luteovirus from infection to disease. Eur J Plant Pathol 151, 841–860 (2018). https://doi.org/10.1007/s10658-018-1425-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1425-8

Keywords

Navigation