European Journal of Plant Pathology

, Volume 151, Issue 4, pp 841–860 | Cite as

The genus Luteovirus from infection to disease

  • Muhammad Ali
  • Sidra Anwar
  • Malik Nawaz Shuja
  • Rajiv Kumar Tripathi
  • Jaswinder Singh


Luteoviruses are economically important plant viruses. Specifically, barley yellow dwarf virus is epiphytotic to almost all small-grain cereal growing areas. The disease cycle is complex. This luteovirus has evolved several intelligent mechanisms to communicate with both plant and phloem-feeding insect-vector aphid. Environmental cues influence disease severity, aphid infestation and viral load. Within an aphid, virus circulates persistently in a non-propagative manner and is transmitted selectively to the host plants. Selection of viruses within aphids has a role in virus isolate prevalence over a specific area. In the host-plant system, the virus has to release its single sense-strand RNA genome (approx. 5.6 to 6 kb), translate and subsequently replicate its genome using its own replicase and host machinery. This review summarizes our current understanding of disease epidemiology and reviews the current literature encompassing viral infectivity, economic impact and control measures.


Barley yellow dwarf virus GroEL Small grain cereal Insect vector Cap-independent translation 



Thanks to Ms. Anup Randhawa for the manuscript proofreading. Helpful comments by anonymous reviewers of this manuscript are much appreciated.

Compliance with ethical standards

Competing interests

All authors declared that no financial or other conflicting interests exist.

Ethical approval

This article does not contain any study with human participants or animals, performed by any of the authors.

Informed consent

All authors read and approved the manuscript.

Supplementary material

10658_2018_1425_MOESM1_ESM.jpg (4 mb)
ESM 1 (JPEG 4103 kb)
10658_2018_1425_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 15 kb)


  1. Achon, M. A., Serrano, L., Ratti, C., & Rubies-Autonell, C. (2006). First detection of wheat dwarf virus in barley in Spain associated with an outbreak of barley yellow dwarf. Plant Disease, 90, 970–970.Google Scholar
  2. Adams, M. J., Lefkowitz, E. J., King, A. M. Q., & Carstens, E. B. (2014). Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses. Archives of Virology, 159, 2831–2841.PubMedGoogle Scholar
  3. Ajayi, O., & Dewar, A. M. (1982). The effect of barley yellow dwarf virus on honeydew production by the cereal aphids Sitobion Avenae and Metopolophium dirhodum. Annals of Applied Biology, 100, 203–212.Google Scholar
  4. Ajayi, O., & Dewar, A. M. (1983). The effect of barley yellow dwarf virus on field populations of cereal aphids, Sitobion Avenae and Metopolophium dirhodum. Annals of Applied Biology, 103, 1–11.Google Scholar
  5. Alexander, M. M., Mohr, J. P., DeBlasio, S. L., Chavez, J. D., Ziegler-Graffe, V., Brault, V., Bruce, J. E., & Cilia, M. H. (2017). Insights in luteovirid structural biology guided by chemical cross-linking and high resolution mass spectrometry. Virus Research.
  6. Ali, M., Hameed, S., & Tahir, M. (2014). Luteovirus: Insights into pathogenicity. Archives of Virology, 159(8).
  7. Ali, M., Tahir, M., & Hameed, S. (2017). Phylogenetic and genome-wide pairwise distance analysis of the genus Luteovirus. Pakistan Journal of Agricultural Sciences, 54(2), 363–371. Google Scholar
  8. Alvarez, A. E., Garzo, E., Verbeek, M., Vosman, B., Dicke, M., & Tjallingii, W. F. (2007). Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis et Applicata, 125, 135–144.Google Scholar
  9. Astier, S., Albouy, J., Lecoq, H., Maury, Y. (2001). Principes de virologie végétale: génome, pouvoir pathogène, écologie des virus. INRA.Google Scholar
  10. Ayala, L., Henry, M., González-de-León, D., van Ginkel, M., Mujeeb-Kazi, A., Keller, B., & Khairallah, M. (2001). A diagnostic molecular marker allowing the study of Th. Intermedium-derived resistance to BYDV in bread wheat segregating populations. Theoretical and Applied Genetics, 102, 942–949.Google Scholar
  11. Bag, S., Rwahnih, M. A., Li, A., Gonzalez, A., Rowhani, A., Uyemoto, J. K., & Sudarshana, M. R. (2015). Detection of a new Luteovirus in imported nectarine trees: A case study to propose adoption of metagenomics in post-entry Quarentine. Phytopathology, 105(6), 840–846. PubMedGoogle Scholar
  12. Baltenberger, D., Ohm, H., & Foster, J. (1987). Reactions of oat, barley, and wheat to infection with barley yellow dwarf virus isolates. Crop Science, 27, 195–198.Google Scholar
  13. Banks, P., Davidson, J., Bariana, H., & Larkin, P. (1995). Effects of barley yellow dwarf virus on the yield of winter wheat. Australian Journal of Agricultural Research, 46, 935–946.Google Scholar
  14. Barker, H., & Waterhouse, P. M. (1999). The development of resistance to luteoviruses mediated by host genes and pathogen-derived transgenes. In H. G. Smith & H. Barker (Eds.), The Luteoviridae (pp. 169–210). Wallingford: CABI Publishing.Google Scholar
  15. Barry, J. K., & Miller, W. A. (2002). A programmed-1 ribosomal frameshift that requires base-pairing across four kilobases suggests a novel mechanism for controlling ribosome and replicase traffic on a viral RNA. Proceedings of National Academy of Sciences USA, 99, 11133–11138.Google Scholar
  16. Bencharki, B., Mutterer, J., Yamani, M. E., Ziegler-Graff, V., Zaoui, D., & Jonard, G. (1999). Severity of infection of Moroccan barley yellow dwarf virus PAV isolates correlates with variability in their coat protein sequences. Annals of Applied Biology, 134, 89–99.Google Scholar
  17. Boissinot, S., Erdinger, M., Monsion, B., Ziegler-Graff, V., & Brault, V. (2014). Both structural and non-structural forms of the readthrough protein of cucurbit aphid-borne yellows virus are essential for efficient systemic infection of plants. PLoS One, 9(4), 1–10.Google Scholar
  18. Bonning, B. C., Pal, N., Liu, S., Wang, Z., Sivakumar, S., Dixon, P. M., King, G. F., & Miller, W. A. (2014). Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nature Biotechnology, 32, 102–105. PubMedGoogle Scholar
  19. Bosque-Pérez, N. A., & Eigenbrode, S. D. (2011). The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Research, 159, 201–205.PubMedGoogle Scholar
  20. Bouvaine, S., Bouvaine, S., Boonham, N., & Douglas, A. E. (2011). Interactions between a luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera Aphidicola of aphids. Journal of General Virology, 92, 1467–1474. PubMedGoogle Scholar
  21. Boyko, V., Ferralli, J., Ashby, J., Schellenbaum, P., & Heinlein, M. (2000). Function of microtubules in intercellular transport of plant virus RNA. Nature Cell Biology, 2, 826–832.PubMedGoogle Scholar
  22. Brault, V., van den Heuvel, J. F. J. M., Verbeek, M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Garaud, J. C., Guilley, H., Richards, K., & Jonard, G. (1995). Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO Journal, 14(4), 650–659.PubMedPubMedCentralGoogle Scholar
  23. Brault, V., Mutterer, J., Scheidecker, D., Simonis, M. T., Herrbach, E., Richards, K., & Ziegler-Graff, V. (2000). Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. Journal of Virology, 74, 1140–1148.PubMedPubMedCentralGoogle Scholar
  24. Brault, V., Périgon, S., Reinbold, C., Erdinger, M., Scheidecker, D., Herrbach, E., Richards, K., & Ziegler-Graff, V. (2005). The Polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. Journal of Virology, 79, 9685–9693.PubMedPubMedCentralGoogle Scholar
  25. Brault, V., Herrbach, É., & Reinbold, C. (2007). Electron microscopy studies on luteovirid transmission by aphids. Micron, 38, 302–312.PubMedGoogle Scholar
  26. Brault, V., Uzest, M., Monsion, B., Jacquot, E., & Blanc, S. (2010). Aphids as transport devices for plant viruses. Comptes Rendus Biologies, 333, 524–538.PubMedGoogle Scholar
  27. Brault, V., Herrbach, E., & Rodriguez-Medina, C. (2011). Luteoviruses, eLS. John Wiley & Sons, Ltd.
  28. Burrows, M. E., Caillaud, M. C., Smith, D. M., & Gray, S. M. (2007). Biometrical genetic analysis of luteovirus transmission in the aphid Schizaphis graminum. Heredity, 98, 106–113.PubMedGoogle Scholar
  29. Callaway, A., Giesman-Cookmeyer, D., Gillock, E., Sit, T., & Lommel, S. (2001). The multifunctional capsid proteins of plant RNA viruses. Annual Review of Phytopathology, 39, 419–460.PubMedGoogle Scholar
  30. Candresse, T., Faure, C., Theil, S., & Marais, A. (2017). First report of nectarine stem pitting-associated virus infecting Prunus mume in Japan. Plant Disease, 101, 393. Google Scholar
  31. Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2005). Analysis of accumulation patterns of barley yellow dwarf virus-PAV (BYDV-PAV) in two resistant wheat lines. European Journal of Plant Pathology, 113, 343–355.Google Scholar
  32. Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P., & Kaloshian, I. (2015). Potato aphid salivary proteome: Enhanced salivation using resorcinol and identification of aphid phosphoproteins. Journal of Proteome Research.
  33. Chavez, J. D., Cilia, M., Weisbrod, C. R., Ju, H. J., Eng, J. K., Gray, S. M., & Bruce, J. E. (2012). Cross-linking measurements of the potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions. Journal of Proteome Research, 11, 2968–2981.PubMedPubMedCentralGoogle Scholar
  34. Chay, C. A., Smith, D., Vaughan, R., & Gray, S. (1996). Diversity among isolates within the PAV serotype of barley yellow dwarf virus. Phytopathology, 86, 370–377.Google Scholar
  35. Chen, M. -H., Sheng, J., Hind, G., Handa, A. K., & Citovsky, V. (2000). Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. The EMBO Journal, 19, 913–920.Google Scholar
  36. Chen, M. -H., Tian, G. -W., Gafni, Y., & Citovsky, V. (2005). Effects of calreticulin on viral cell-to-cell movement. Plant Physiology, 138, 1866–1876.Google Scholar
  37. Cheng, S. L., Domier, L. L., & D'Arcy, C. J. (1994). Detection of the readthrough protein of barley yellow dwarf virus. Virology, 202(2), 1003–1006.PubMedGoogle Scholar
  38. Cheng, Z., He, X., Wu, M., Zhou, G., Keese, P., & Waterhouse, P. (1996). Nucleotide sequence of coat protein gene for GPV isolate of barley yellow dwarf virus and construction of expression plasmid for plant. Science in China Series C Life Sciences-English Edition, 39, 534–543.Google Scholar
  39. Chougule, N. P., & Bonning, B. C. (2012). Toxins for transgenic resistance to hemipteran pests. Toxins (Basel), 4, 405–429.Google Scholar
  40. Cilia, M., Tamborindeguy, C., Fish, T., Howe, K., Thannhauser, T. W., & Gray, S. (2011). Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. Journal of Virology, 85, 2148–2166.PubMedGoogle Scholar
  41. Comeau, A. (1987). Effects of BYDV inoculations at various dates in oats, barley, wheat, rye and triticale. Phytoprotection, 68, 97–109.Google Scholar
  42. Comeau, A., & Dubuc, J. P. (1977). Observations on the 1976 barley yellow dwarf epidemic in eastern Canada. Canadian Plant Disease Survey, 57, 42–44.Google Scholar
  43. Conti, M., D’Arcy, C. J., & Jedlinski, H. (1987). The “yellow plague” of cereals, barley yellow dwarf virus. Pp. 1-6. In: World perspectives on barley yellow dwarf. Burnett, P. A.(eds.) 91-013855, CIMMYT.
  44. Creamer, R., & Falk, B. W. (1990). Direct detection of transcapsidated barley yellow dwarf luteoviruses in doubly infected plants. Journal of General Virology, 71, 211–217.Google Scholar
  45. D’Arcy, J. (1995). Symptomatology and host range of barley yellow dwarf. In: Barley yellow dwarf: Forty years of progress. D’Arcy, J. & Burnett, P., 107–127, APS Press, St. Paul.Google Scholar
  46. de Vos, M., & Jander, G. (2010). Volatile communication in plant-aphid interactions. Current Opinion in Plant Biology, 13, 366–371.PubMedGoogle Scholar
  47. DeBlasio, S. L., Johnson, R., Mahoney, J., Karasev, A., Gray, S. M., MacCoss, M. J., & Cilia, M. (2014). Insights into the polerovirus-plant interactome revealed by co-immunoprecipitation and mass spectrometry. Molecular Plant-Microbe Interactions.
  48. Dietrich, C., & Maiss, E. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. Journal of General Virology, 84, 2871–2876.PubMedGoogle Scholar
  49. Domier, L. L. (2009). Barley yellow dwarf viruses. In M. H. V. V. Regenmortel (Ed.), Mahy, B. W. J (pp. 279–285). Desk Encyclopedia of Plant and Fungal Virology: Elsevier.Google Scholar
  50. Domier, L. L. (2011). Family Luteoviridae. Pp, 1045–1053. In: Virus Taxonomy – Classification and Nomenclature of Viruses. Ninth report of the International Committee on Taxonomy of Viruses. King, A. M. Q., Adams, M. J., Carsten, E. B., & Lefkowitz, E. J. (Eds), Elsevier.Google Scholar
  51. Domier, L. L., McCoppin, N. K., Larsen, R. C., & D’Arcy, C. J. (2002). Nucleotide sequence shows that Bean leafroll virus has a luteovirus-like genome organization. Journal of General Virology, 83, 1791–1798.PubMedGoogle Scholar
  52. Du, Z. Q., Li, L., Liu, L., Wang, X., & Zhou, G. (2007). Evaluation of aphid transmission abilities and vector transmission phenotypes of barley yellow dwarf viruses in China. Journal of Plant Pathology, 89, 251–259.Google Scholar
  53. Eamens, A., Wang, M. B., Smith, N. A., & Waterhouse, P. M. (2008). RNA silencing in plants: Yesterday, today, and tomorrow. Plant Physiology, 147, 456–468.PubMedPubMedCentralGoogle Scholar
  54. Fabre, F., Dedryver, C., Leterrier, J., & Plantegenest, M. (2003). Aphid abundance on cereals in autumn predicts yield losses caused by barley yellow dwarf virus. Phytopathology, 93, 1217–1222.PubMedGoogle Scholar
  55. Fabre, F., Plantegenest, M., Mieuzet, L., Dedryver, C. A., Leterrier, J. -L., & Jacquot, E. (2005). Effects of climate and land use on the occurrence of viruliferous aphids and the epidemiology of barley yellow dwarf disease. Agriculture, Ecosystems and Environment, 106, 49–55.Google Scholar
  56. Fiebig, M., Poehling, H. M., & Borgemeister, C. (2004). Barley yellow dwarf virus, wheat, and Sitobion avenae: A case of trilateral interactions. Entomologia Experimentalis et Applicata, 110, 11–21. Google Scholar
  57. Filichkin, S. A., Lister, R. M., McGrath, P. F., & Young, M. J. (1994). In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology, 205(1), 290–299.PubMedGoogle Scholar
  58. Filichkin, S. A., Brumfield, S., Filichkin, T. P., & Young, M. J. (1997). In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. Journal of Virology, 71, 569–577.PubMedPubMedCentralGoogle Scholar
  59. Folimonova, S. Y. (2012). Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. Journal of Virology, 86, 5554–5561.PubMedPubMedCentralGoogle Scholar
  60. Garret, A., Kerlan, C., & Thomas, D. (1993). The intestine is a site of passage for potato leafroll virus from the gut lumen into the haemocoel in the aphid vector, Myzus persicae Sulz. Archives of Virology, 131, 377–392.PubMedGoogle Scholar
  61. Garret, A., Kerlan, C., & Thomas, D. (1996). Ultrastructural study of acquisition and retention of potato leafroll luteovirus in the alimentary canal of its aphid vector, Myzus persicae Sulz. Archives of Virology, 141, 1279–1292.PubMedGoogle Scholar
  62. Gildow, F., Damsteegt, V., Stone, A., Smith, O., & Gray, S. (2000). Virus-vector cell interactions regulating transmission specificity of soybean dwarf Luteoviruses. Journal of Phytopathology, 148, 333–342.Google Scholar
  63. Gill, C., & Chong, J. (1975). Development of the infection in oat leaves inoculated with barley yellow dwarf virus. Virology, 66, 440–453.PubMedGoogle Scholar
  64. Goldbach, R., Wellink, J., Ververl, J., van Kammen, A., Kasteel, D., & van Lent, J. (1994). Adaptation of positive stranded RNA viruses to plants. Archives of Virology [Supplementum], 9, 87–97.Google Scholar
  65. Gray, S. M., & Banerjee, N. (1999). Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 63, 128–148.PubMedPubMedCentralGoogle Scholar
  66. Gray, S. M., & Gildow, F. E. (2003). Luteovirus-aphid interactions. Annual Review of Phytopathology, 41, 539–566.PubMedGoogle Scholar
  67. Gray, S. M., Cilia, M., & Ghanim, M. (2014a). Circulative, nonpropagative virus transmission: An orchestra of virus, insect and plant derived instruments. Advances in Virus Research, 89, 141–199.PubMedGoogle Scholar
  68. Gray, S., Cilia, M., & Ghanim, M. (2014b). Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Advances in Virus Research, 89, 141–199.PubMedGoogle Scholar
  69. Guo, L., Allen, E., & Miller, W. A. (2000). Structure and function of a cap-independent translation element that functions in either the 3′ or the 5′ untranslated region. RNA, 6, 1808–1820.PubMedPubMedCentralGoogle Scholar
  70. Guo, L., Allen, E., & Miller, W. A. (2001). Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Molecular Cell, 7, 1103–1109.PubMedGoogle Scholar
  71. Gutiérrez, S., Michalakis, Y., Van Munster, M., & Blanc, S. (2013). Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses. Functional Ecology, 27, 610–622.Google Scholar
  72. Hall, G. (2006). Selective constraint and genetic differentiation in geographically distant barley yellow dwarf virus populations. Journal of General Virology, 87, 3067–3075.PubMedGoogle Scholar
  73. Hall, G., Peters, J., Little, D., & Power, A. (2010). Plant community diversity influences vector behaviour and barley yellow dwarf virus population structure. Plant Pathology, 59, 1152–1158.Google Scholar
  74. Henry, M., & Dedryver, C. (1991). Occurrence of barley yellow dwarf virus in pastures of western France. Plant Pathology, 40, 93–99.Google Scholar
  75. Henry, M., van Ginkel, M., & Khairallah, M. (2001). Marker-assisted selection for BYDV resistance in wheat. CIMMYT wheat. Program, 41.Google Scholar
  76. Hesketh, E. L., Meshcheriakova, Y., Dent, K. C., Saxena, P., Thompson, R. F., Cockburn, J. J., Lomonossoff, G. P., & Ranson, N. A. (2015). Mechanisms of assembly and genome packaging in an RNA virus revealed by high-resolution cryo-EM. Nature Communications, 6, 10113. PubMedPubMedCentralGoogle Scholar
  77. Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359. PubMedGoogle Scholar
  78. Hu, J., Rochow, W., Palukaitis, P., & Dietert, R. (1988). Phenotypic mixing: Mechanism of dependent transmission for two related isolates of barley yellow dwarf virus. Phytopathology, 78, 1326–1330.Google Scholar
  79. Igori, D., Lim, S., Baek, D., Cho, I. S., & Moon, J. S. (2017). Complete nucleotide sequence of a highly divergent cherry-associated luteovirus (ChALV) isolate from peach in South Korea. Archives of Virology.
  80. Ingwell, L. L., Eigenbrode, S. D., & Bosque-Pérez, N. A. (2012). Plant viruses alter insect behavior to enhance their spread. Scientific Reports, 2.
  81. Jedlinski, H., Rochow, W., & Brown, C. (1977). Tolerance to barley yellow dwarf virus in oats. Phytopathology, 67, 1408–1411.Google Scholar
  82. Jeger, M., Chen, Z., Cunningham, E., Martin, G., & Powell, G. (2012). Population biology and epidemiology of plant virus epidemics: From tripartite to tritrophic interactions. European Journal of Plant Pathology, 133, 3–23.Google Scholar
  83. Jensen, S. (1968). Photosynthesis respiration and other physiological relationships in barley infected with barley yellow dwarf virus. Phytopathology, 58, 204–208.Google Scholar
  84. Jensen, S., Fitzgerald, P., & Thysell, J. (1971). Physiology and field performance of wheat infected with barley yellow dwarf virus. Crop Science, 11, 775–780.Google Scholar
  85. Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., & Zemetra, R. S. (2004a). Life history of the bird cherry-oat aphid, Rhopalosipum padi (Homoptera, Aphididae), on transgenic and untransformed wheat challenged with barley yellow dwarf virus. Journal of Economic Entomology, 97, 203–212.PubMedGoogle Scholar
  86. Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemetra, R. S., Ding, H., & Eigenbrode, S. D. (2004b). Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to barley yellow dwarf virus-infected transgenic and untransformed wheat. Environmental Entomology, 33, 1207–1216.Google Scholar
  87. Jones, R., McKirdy, S., & Shivas, R. (1990). Occurrence of barley yellow dwarf viruses in over-summering grasses and cereal crops in Western Australia. Australasian Plant Pathology, 19, 90–96.Google Scholar
  88. Kakeda, K., & Ishikawa, H. (1991). Molecular chaperon produced by an intracellular symbiont. Journal of Biochemistry, 110, 583–587.PubMedGoogle Scholar
  89. Kennedy, T., & Connery, J. (2005). Grain yield reductions in spring barley due to Barley yellow dwarf virus and aphid feeding. Irish Journal of Agriculure and Food Research, 44(1), 111–128.Google Scholar
  90. Koev, G., & Miller, W. A. (2000). A positive strand RNA virus with three very different subgenomic RNA promoters. Journal of Virology, 74(13), 5988–5996.PubMedPubMedCentralGoogle Scholar
  91. Koev, G., Mohan, B., Dinesh-Kumar, S., Torbert, K. A., Somers, D. A., & Miller, W. A. (1998). Extreme reduction of disease in oats transformed with the 5'half of the barley yellow dwarf virus-PAV genome. Phytopathology, 88, 1013–1019.PubMedGoogle Scholar
  92. Krizbai, K., Kriston, E., Kreuze, J., & Melika, G. (2017). Identification of Nectarine stem-pitting associated virus infeccting Prunus persica in Hungary. New Disease Reports, 35, 18. Google Scholar
  93. Krueger, E. N., Beckett, R. J., Gray, S. M., & Miller, W. A. (2013). The complete nucleotide sequence of the genome of barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Frontiers in Microbiology.
  94. Kundu, J., Jarošová, J., Gadiou, S., & Cervená, G. (2009). Discrimination of three BYDV species by one-step RT-PCR-RFLP and sequence based methods in cereal plants from the Czech Republic. Cereal Research Communications, 37, 541–550.Google Scholar
  95. Kupper, M., Gupta, S. K., Feldhaar, H., & Gross, R. (2014). Versatile roles of the chaperonin GroEL in microorganism–insect interactions. FEMS Microbiology Letters, 353, 1–10. PubMedGoogle Scholar
  96. Larkin, P., Young, M., Gerlach, W., & Waterhouse, P. (1991). The Yd2 resistance to barley yellow dwarf virus is effective in barley plants but not in their leaf protoplasts. Annals of Applied Biology, 118, 115–125.Google Scholar
  97. Larkin, P., Kleven, S., & Banks, P. (2002). Utilizing Bdv2, the Thinopyrum intermedium source of BYDV resistance, to develop wheat cultivars. In M. Henry & A. McNab (Eds.), Recent advances and future strategies (pp. 60–63). CIMMYT Texcoco: Mexico.Google Scholar
  98. Lefèvre, T., & Thomas, F. (2008). Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infection Genetics and Evolution, 8, 504–519.Google Scholar
  99. Lenz, O., Přibylová, J., Koloniuk, I., & Špak, J. (2016). Identification and characterization of a new member of the genus Luteovirus from cherry. Archives of Virology.
  100. Linz, L. B., Liu, S., Chougule, N. P., & Bonning, B. C. (2015). In vitro evidence supports membrane alanyl aminopeptidase N as a receptor for a plant virus in the pea aphid vector. Journal of Virology.
  101. Liu, K., Xia, Z., Zhang, Y., Wen, Y., Wang, D., Brandenburq, K., Harris, F., & Phoenix, D. A. (2005). Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: Role of a putative amphiphilic alpha-helix at the N-terminus of the movement protein. Biopolymers, 79, 86–96.PubMedGoogle Scholar
  102. Liu, F., Wang, X., Liu, Y., Xie, J., Gray, S., Zhou, G., & Gao, B. (2007). A Chinese isolate of Barley yellow dwarf virus-PAV represents a third distinct species within the PAV serotype. Archives of Virology, 152, 1365–1373.PubMedGoogle Scholar
  103. Liu, S., Sivakumar, S., Sparks, W. O., Miller, W. A., & Bonning, B. C. (2010). A peptide that binds the pea aphid gut impedes entry of pea enation mosaic virus into the aphid hemocoel. Virology, 401, 107–116.PubMedGoogle Scholar
  104. Liu, Y., Zhai, H., Zhao, K., Wu, B., & Wang, X. (2012). Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae. Journal of General Virology, 93, 1825–1830.PubMedGoogle Scholar
  105. Lu, M. G., Zhang, C., Zhang, Z. X., Wang, C. A., & Li, S. F. (2017). Nectarine stem-pitting-associated virus detected in peach trees in China. Plant Disease, 101, 513. Google Scholar
  106. Luan, J. B., Li, J. M., Varela, N., Wang, Y. L., Li, F. F., Bao, Y. Y., Zhang, C. X., Liu, S. S., & Wang, X. W. (2011). Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. Journal of Virology, 85, 3330–3340.PubMedPubMedCentralGoogle Scholar
  107. Lucas, W. J. (2006). Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology, 344(1), 169–184. PubMedGoogle Scholar
  108. Maia, I. G., Gonclaves, M. C., Arruda, P., & Vega, J. (2000). Molecular evidence that Sugarcane yellow leaf virus (ScYLV) is a member of the Luteoviridae family. Archives of Virology, 145, 1009–1019.PubMedGoogle Scholar
  109. Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A., & Cook, M. A. (2007). Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illustrate historical disease ecology of invasive and native grasses. Journal of Ecology, 95, 1153–1166.Google Scholar
  110. Malmstrom, C. M., Melcher, U., & Bosque-Pérez, N. A. (2011). The expanding field of plant virus ecology, historical foundations, knowledge gaps, and research directions. Virus Research, 159, 84–94.PubMedGoogle Scholar
  111. Matzke, M. A., & Mosher, R. A. (2014). RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nature Reviews Genetics.
  112. Mauck, K. E., DeMoraes, C. M., & Mescher, M. C. (2010a). Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of National Academy of Sciences, 107, 3600–3605.Google Scholar
  113. Mauck, K. E., DeMoraes, C. M., & Mescher, M. C. (2010b). Effects of cucumber mosaic virus infection on vector and non-vector herbivores of squash. Communicative and Integrative Biology, 3, 579–582.PubMedPubMedCentralGoogle Scholar
  114. Mauck, K., Bosque-Pérez, N. A., Eigenbrode, S. D., DeMoraes, C. M., & Mescher, M. C. (2012). Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Functional Ecology, 26, 1162–1175.Google Scholar
  115. Mayo, M., & d’Arcy, C. (1999). Family Luteoviridae: a reclassification of luteoviruses. In: The Luteoviridae (pp. 15–22). CABI Publishing, WallingfordGoogle Scholar
  116. McGrath, P., Vincent, J., Lei, C. -H., Pawlowski, W., Torbert, K., Gu, W., Kaeppler, H., Wan, Y., Lemaux, P., & Rines, H. (1997). Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. European Journal of Plant Pathology, 103, 695–710.Google Scholar
  117. McKirdy, S., Jones, R., & Nutter Jr., F. (2002). Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Disease, 86, 769–773.Google Scholar
  118. McMenemy, L. S., Hartley, S. E., MacFarlane, S. A., Karley, A. J., Shepherd, T., & Johnson, S. N. (2012). Raspberry viruses manipulate the behaviour of their insect vectors. Entomologia Experimentalis et Applicata, 144, 56–68.Google Scholar
  119. Medina-Ortega, K. J., Bosque-Perez, N. A., Ngumbi, E., Jiménez-Martínez, E. S., & Eigenbrode, S. D. (2009). Rhopalosiphum padi (Hemiptera, Aphididae) responses to volatile cues from Barley yellow dwarf virus–infected wheat. Environmental Entomology, 38, 836–845.PubMedGoogle Scholar
  120. Miller, W. A., & Rasochová, L. (1997). Barley yellow dwarf viruses. Annual Review of Phytopathology, 35, 167–190.PubMedGoogle Scholar
  121. Miller, W. A., & White, K. A. (2006). Long-distance RNA-RNA interacions in plant virus gene expression and replication. Annual Review of Phytopathology, 44, 447–467.PubMedPubMedCentralGoogle Scholar
  122. Miller, W. A., Dinesh-Kumar, S., & Paul, C. P. (1995). Luteovirus gene expression. Critical Reviews in Plant Sciences, 14(3), 179–211.Google Scholar
  123. Miller, W. A., Liu, S., & Beckett, R. (2002). Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Molecular Plant Pathology, 3, 177–183.PubMedGoogle Scholar
  124. Miller, W. A., Jackson, J., & Feng, Y. (2015). Positive strand RNA virus replication: It depends on the ends. Virus Research, 206, 37–45. PubMedPubMedCentralGoogle Scholar
  125. Montllor, C. B., & Gildow, F. E. (1986). Feeding responses of two grain aphids to barley yellow dwarf virus -infected oats. Entomologia Experimentalis et Applicata, 42, 63–69.Google Scholar
  126. Moonan, F., Molina, J., & Mirkov, T. E. (2000). Sugarcane yellow leaf virus: An emerging virus that has evolved by recombination luteoviral and poleroviral ancestors. Virology, 269, 156–171.PubMedGoogle Scholar
  127. Moreno, A., Garzo, E., Fernandez-Mata, G., Kassem, M., Aranda, M. A., & Fereres, A. (2011). Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomologia Experimentalis et Applicata, 139(2), 145–153.Google Scholar
  128. Mukhopadhyay, S. (2011). Plant Virus. Vector: Epidemiology and Management. Science Publishers.Google Scholar
  129. Nass, P. H., Jakstys, B. P., & D'Arcy, C. J. (1995). In situ localization of barley yellow dwarf virus coat protein in oats. Phytopathology, 85, 556–560.Google Scholar
  130. Nass, P. H., Domier, L. L., Jakstys, B. P., & D'Arcy, C. J. (1998). In Situ localization of Barley yellow dwarf virus-PAV 17-kDa protein and nucleic acids in oats. Phytopathology, 88(10), 1031–1039.PubMedGoogle Scholar
  131. Oparka, K. J. (2004). Getting the message across: How do plant cells exchange macromolecular complexes? Trends in Plant Science, 9, 33–41.PubMedGoogle Scholar
  132. Ordon, F., Habekuss, A., Kastirr, U., Rabenstein, F., & Kühne, T. (2009). Virus resistance in cereals: Sources of resistance, genetics and breeding. Journal of Phytopathology, 157, 535–545.Google Scholar
  133. Oswald, J. W., & Houston, B. (1953). The yellow-dwarf virus disease of cereal crops. Phytopathology, 43, 128–136.Google Scholar
  134. Pal, N., Yamamoto, T., King, G. F., Waine, C., & Bonning, B. C. (2013). Aphicidal efficacy of scorpion- and spider-derived neurotoxins. Toxicon, 70, 114–122.PubMedGoogle Scholar
  135. Pallas, V., & Garcia, J. A. (2011). How do plant viruses induce disease? Interactions and interference with host components. Journal of General Virology, 92, 2691–2705.PubMedGoogle Scholar
  136. Pazhouhandeh, M., Dieterle, M., Marrocco, K., Lechner, E., Berry, B., Brault, V., Hemmer, O., Kretsch, T., Richards, K., Genschik, P., & Ziegler-Graff, V. (2006). F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proceedings of National Academy of Sciences, 103, 1994–1999.Google Scholar
  137. Perry, K. L., Kolb, F. L., Sammons, B., Lawson, C., Cisar, G., & Ohm, H. (2000). Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology, 90, 1043–1048.PubMedGoogle Scholar
  138. Peter, K. A., Gildow, F., Palukaitis, P., & Gray, S. M. (2009). The C terminus of the Polerovirus p5 readthrough domain limits virus infection to the phloem. Journal of Virology, 83(11), 5419–5429.PubMedPubMedCentralGoogle Scholar
  139. Pinheiro, P. V., Ghanim, M., Alexander, M., Rebelo, A. R., Santos, R. S., Orsburn, B. C., Gray, S., & Cilia, M. (2016). Host plants indirectly influence plant virus transmission by altering gut cysteine protease activity of aphid vectors. Molecular and Cellular Proteomics.
  140. Ponzio, C., Gols, R., Pieterse, C. M. J., & Dicke, M. (2013). Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology, 27, 587–598.Google Scholar
  141. Poulin, R. (1995). Adaptive changes in the behaviour of parasitized animals: A critical review. International Journal of Parasitology, 25, 1371–1383.PubMedGoogle Scholar
  142. Poulin, R. (2010). Parasite manipulation of host behavior: An update and frequently asked questions. In: Brockmann, H.J., Roper, T.J., Naguib, M., WynneEdwards, K.E., Mitani, J.C., & Simmons, L.W. (Eds.), Advances in the Study of Behavior, Academic Press, 41, 151–186.Google Scholar
  143. Power, A., & Gray, S. (1995). Aphid transmission of barley yellow dwarf viruses: Interactions between viruses, vectors, and host plants. In: Barley Yellow Dwarf, 40, 259–289.Google Scholar
  144. Rajabaskar, D., Bosque-Pérez, N. A., & Eigenbrode, S. D. (2013a). Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Research.
  145. Rajabaskar, D., Ding, H., Wu, Y., & Eigenbrode, S. D. (2013b). Different reactions of potato varieties to infection by potato leafroll virus, and associated responses by its vector, Myzus persicae (Sulzer). Journal of Chemical Ecology.
  146. Rajabaskar, D., Wu, Y., Bosque-Pérez, N. A., & Eigenbrode, S. D. (2013c). Dynamics of Myzus persicae arrestment by volatiles from potato leafroll virus-infected potato plants during disease progression. Entomologia Experimentalis et Applicata, 148, 172–181.Google Scholar
  147. Rana, V. S., Singh, S. T., Gayatri Priya, N., Kumar, J., & Rajagopal, R. (2012). Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. Tabaci. PLoS One, 7(8), e42168. PubMedPubMedCentralGoogle Scholar
  148. Rathjen, J. P., Karageorgos, L. E., Habili, N., Waterhouse, P. M., & Symons, R. H. (1994). Soybean dwarf luteovirus contains the third variant genome type in the luteovirus group. Virology, 198, 671–679.PubMedGoogle Scholar
  149. Reinbold, C., Gildow, F. E., Herrbach, E., Ziegler-Graff, V., Gonclaves, M. C., van den Heuvel, J. F. J. M., & Brault, V. (2001). Studies on the role of the minor capsid protein in transport of beet western yellows virus through Myzus persicae. Journal of General Virology, 82(8), 1995–2007. PubMedGoogle Scholar
  150. Riedell, W. E., Kieckhefer, R. W., Langham, M. A., & Hesler, L. S. (2003). Root and shoot responses to bird cherry-oat aphids and in spring wheat. Crop Science, 43, 1380–1386.Google Scholar
  151. Rochow, W., & Muller, I. (1971). A fifth variant of barley yellow dwarf virus in New York. Plant Disease Reporter, 55, 874–877.Google Scholar
  152. Roosien, B. K., Gomulkiewicz, R., Ingwell, L. L., Bosque-Pérez, N. A., Rajabaskar, D., & Eigenbrode, S. D. (2013). Conditional vector preference aids the spread of plant pathogens: Results from a model. Environmental Entomology.
  153. Salem, N. M., Miller, W. A., Rowhani, A., Golino, D. A., Moyne, A. L., & Falk, B. W. (2008). Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus. Virology, 375, 354–360.PubMedPubMedCentralGoogle Scholar
  154. Seabloom, E. W., Borer, E. T., Jolles, A., & Mitchell, C. E. (2009). Direct and indirect effects of viral pathogens and the environment on invasive grass fecundity in Pacific coast grasslands. Journal of Ecology, 97, 1264–1273.Google Scholar
  155. Sharma, H., Gill, B., & Uyemoto, J. (1984). High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Journal of Phytopathology, 110, 143–147.Google Scholar
  156. Shen, R., & Miller, W. A. (2004). Subgenomic RNA as a riboregulator: Negative regulation of RNA replication by barley yellow dwarf virus subgenomic RNA 2. Virology, 327, 196–205.PubMedGoogle Scholar
  157. Shen, R., Rakotondrafara, A. M., & Miller, W. A. (2006). Trans regulation of cap-independent translation by a viral subgenomic RNA. Journal of Virology, 80(20), 10045–10054. PubMedPubMedCentralGoogle Scholar
  158. Sherman, M. P., de Noronha, C. M. C., Heusch, M. I., Greene, S., & Greene, W. C. (2001). Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. Journal of Virology, 75, 1522–1532. PubMedPubMedCentralGoogle Scholar
  159. Shukla, A. K., Upadhyay, S. K., Mishra, M., Saurabh, S., Singh, R., Singh, H., Thakur, N., Rai, P., Pandey, P., Hans, A. L., Srivastava, S., Rajapure, V., Yadav, S. K., Singh, M. K., Kumar, J., Chandrashekar, K., Verma, P. C., Singh, A. P., Nair, K. N., Bhadauria, S., Wahajuddin, M., Singh, S., Sharma, S., Omkar, Upadhyay, R. S., Ranade, S. A., Tuli, R., & Singh, P. K. (2016). Expression of an insecticidal fern protein in cotton protects against whitefly. Nature Biotechnology.
  160. Simon, A. E., & Miller, W. A. (2013). 3′ cap-independent translation enhancers of plant viruses. Annual Review of Microbiology, 67,(21). PubMedPubMedCentralGoogle Scholar
  161. Singh, M., & Singh, J. (2012). Seed development-related expression of ARGONAUTE4_9 class of genes in barley: possible role in seed dormancy. Euphytica, 188, 123–129.Google Scholar
  162. Singh, M., Singh, S., Randhawa, H., & Singh, J. (2013). Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_9 class is associated with pre-harvest sprouting in wheat (Triticum aestivum L.) PLos One, 8(10), e77009. PubMedPubMedCentralGoogle Scholar
  163. Smirnova, E., Firth, A. E., Miller, W. A., Scheidecker, D., Brault, V., Reinbold, C., Rakotondrafara, A. M., Chung, B. Y. -W., & Ziegler-Graff, V. (2015). Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathogens, 11(5), e1004868.
  164. Smith, H. C. (1967). The effect of aphid numbers and stage of plant growth in determining tolerance to barley yellow dwarf virus in cereals. New Zealand Journal of Agricultural Research, 10, 445–466.Google Scholar
  165. Smith, G. R., Borg, Z., Lockhart, B. E. L., Braithwaite, K. S., & Gibbs, M. J. (2000). Sugarcane yellow leaf virus: A novel member of the Luteoviridae that probably arose by inter-species recombination. Journal of General Virology, 81, 1865–1869.PubMedGoogle Scholar
  166. Srinivasan, R., Alvarez, J. M., Eigenbrode, S. D., & Bosque-Pérez, N. A. (2006). Influence of hairy nightshade Solanum sarrachoides (Sendtner) and Potato leafroll virus (Luteoviridae: Polerovirus) on the host preference of Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology, 35, 546–553.Google Scholar
  167. Sward, R., & Lister, R. (1988). The identity of barley yellow dwarf virus isolates in cereals and grasses from mainland Australia. Crop and Pasture Science, 39, 375–384.Google Scholar
  168. Tacke, E., Schmitz, J., Prufer, D., & Rohde, W. (1993). Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic α-helix as the domain for protein/protein interactions. Virology, 197(1), 274–282.PubMedGoogle Scholar
  169. Takahashi, T., Sugawara, T., Yamatsuta, T., Isogai, M., Natsuaki, T., & Yoshikawa, N. (2007). Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow fluorescent proteins in coinfected plants. Phytopathology, 97, 1200–1206.PubMedGoogle Scholar
  170. Tamada, T., & Harrison, B. D. (1981). Quantitative studies on the uptake and retention of potato leafroll virus by aphids in laboratory and field conditions. Annals of Applied Biology, 98, 261–276.Google Scholar
  171. Terauchi, H., Kanematsu, S., Honda, K., Mikoshiba, Y., Ishiguro, K., & Hidaka, S. (2001). Comparison of complete nucleotide sequences of genomic RNAs of four soybean dwarf virus strains that differ in their vector specificity and symptom production. Archives of Virology, 146, 1885–1898.PubMedGoogle Scholar
  172. Thackray, D., Hawkes, J., & Jones, R. (2001). Further developments in forecasting aphid and virus risk in cereals. In R. Jettner & J. Johns (Eds.), Western Australian annual crop updates–cereals (pp. 67–69). Perth: Agriculture Western Australia.Google Scholar
  173. Tjallingii, W. F. (2006). Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany, 57(4), 739–745.PubMedGoogle Scholar
  174. Tjallingii, W. F., & Esch, T. H. (1993). Fine structure of the stylet route in plant tissues by some aphids. Physiological Entomology, 18, 317–328.Google Scholar
  175. Torrance, L. (1992). Analysis of epitopes on potato leafroll virus capsid protein. Virology, 191, 485–489.PubMedGoogle Scholar
  176. Tougou, M., Furutani, N., Yamagishi, N., Shizukawa, Y., Takahata, Y., & Hidaka, S. (2006). Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus. Plant Cell Reports, 25, 1213–1218.PubMedGoogle Scholar
  177. Treder, K., Kneller, E. L. P., Allen, E. M., Wang, Z., Browning, K. S., & Miller, W. A. (2008). The 3′ cap-independent translation element of barley yellow dwarf virus binds eIF4F via the eIF4G subunit to initiate translation. RNA, 14, 134–147.PubMedPubMedCentralGoogle Scholar
  178. Trzmiel, K. (2006). Barley yellow dwarf virus-MAV (BYDV-MAV) and Barley yellow dwarf virus-PAV (BYDV-PAV) on maize in Poland. Phytopathologia Polonica, 53–56.Google Scholar
  179. van Bel, A. (2003). The phloem, a miracle of ingenuity. Plant, Cell and Environment, 26, 125–149.Google Scholar
  180. van den Heuvel, J., Verbeek, M., & Van der Wilk, F. (1994). Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. Journal of General Virology, 75, 2559–2565.PubMedGoogle Scholar
  181. Villamor, D. E. V., Mekuria, T. A., Pillai, S. S., & Eastwell, K. C. (2016). High-throughput sequencing identifies novel viruses in nectarine: Insights to the etiology of stem-pitting disease. Phytopathology, 106, 519–527. PubMedGoogle Scholar
  182. Wang, J. Y., Chay, C., Gildow, F. E., & Gray, S. M. (1995). Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology, 206(2), 954–962.PubMedGoogle Scholar
  183. Wang, M. -B., Cheng, Z., Keese, P., Graham, M., Larkin, P., & Waterhouse, P. (1998). Comparison of the coat protein, movement protein and RNA polymerase gene sequences of Australian, Chinese, and American isolates of barley yellow dwarf virus transmitted by Rhopalosiphum padi. Archives of Virology, 143, 1005–1013.Google Scholar
  184. Wang, M. -B., Abbott, D. C., & Waterhouse, P. M. (2000). A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology, 1, 347–356.Google Scholar
  185. Wang, X., Chang, S., Jin, Z., Li, L., & Zhou, G. (2001). Nucleotide sequences of the coat protein and readthrough protein genes of the Chinese GAV isolate of barley yellow dwarf virus. Acta Virologica, 45, 249.PubMedGoogle Scholar
  186. Wang, X., Liu, Y., Chen, L., Zhao, D., Wang, X., & Zhang, Z. (2013). Wheat resistome in response to barley yellow dwarf virus infection. Functional and Integrative Genomics, 1–11.Google Scholar
  187. Wang, H., Wu, K., Liu, Wu, Y., & Wang, X. (2015). Integrative proteomics to understand the transmission mechanism of barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi. Scientific Reports, 5, 10971, doi:
  188. Waziri, H., El Gaffar, M. A., Allam, E., & El Din, A. G. (2002). Coat protein sequence of an Egyptian BYDV-PAV isolate (p. 97). Barley Yellow Dwarf Disease: Recent Advances and Future Strategies.Google Scholar
  189. Webster, B. (2012). The role of olfaction in aphid host location. Physiological Entomology, 37, 10–18.Google Scholar
  190. Werner, B. J., Mowry, T. M., Bosque-Pérez, N. A., Ding, H., & Eigenbrode, S. D. (2009). Changes in green peach aphid responses to potato leafroll virus-induced volatiles emitted during disease progression. Environmental Entomology, 38, 1429–1438.PubMedGoogle Scholar
  191. Whitfield, A. E., Falk, W. B., & Rotenberg, D. (2015). Insect vector-mediated transmission of plant viruses. Virology, 479, 278–289. PubMedGoogle Scholar
  192. Wu, B., Blanchard-Letort, A., Liu, Y., Zhou, G., Wang, X., & Elena, S. F. (2011). Dynamics of molecular evolution and phylogeography of barley yellow dwarf virus-PAV. PLoS One, 6, e16896.PubMedPubMedCentralGoogle Scholar
  193. Xia, Z., Cao, R., Sun, K., & Zhang, H. (2012). The movement protein of barley yellow dwarf virus-GAV self-interacts and forms homodimers in vitro and in vivo. Archives of Virology, 157, 1233–1239.PubMedGoogle Scholar
  194. Xifeng, W., & Guanghe, Z. (2003). Identification of a protein associated with circulative transmission of Barley yellow dwarf virus from cereal aphids, Schizaphis graminum and Sitobion avenae. Chinese Science Bulletin, 48, 2083–2087. Google Scholar
  195. Yang, X., Thannhauser, T. W., Burrows, M., Cox-Foster, D., Gildow, F. E., & Gray, S. M. (2008). Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (Luteoviridae). Journal of Virology, 82(1), 291–299. PubMedGoogle Scholar
  196. Yébenes, H., Mesa, P., Muñoz, I. G., Montoya, G., & Valpuesta, J. M. (2011). Chaperonins: Two rings for folding. Trends in Biochemical Sciences, 36(8), 424–432. PubMedGoogle Scholar
  197. Yoshioka, K., Matsushita, Y., Kasahara, M., Konagaya, K. -I., & Nyunoya, H. (2004). Interaction of tomato mosaic virus movement protein with tobacco RIO kinase. Molecules and Cells, 17, 223–229.Google Scholar
  198. Yu, W., Xu, Z., Francis, F., Liu, Y., Cheng, D., Bragard, C., & Chen, J. (2013). Variation in the transmission of Barley yellow dwarf virus PAV by different Sitobean avenae clones in China. Journal of Virological Methods, 194, 1–6.PubMedGoogle Scholar
  199. Zhang, Z. Y., Xin, Z. Y., Chen, X., Qian, Y. T., Lin, Z. S., Xu, H. J., & Ma, Y. Z. (2000). Molecular cytogenetic characterization of a new wheat line YW443 with resistance to barley yellow dwarf virus. Acta Genetica Sinica, 27, 614–620.PubMedGoogle Scholar
  200. Zhang, Z., Lin, Z., & Xin, Z. (2009). Research progress in BYDV resistance genes derived from wheat and its wild relatives. Journal of Genetics and Genomics, 36, 567–573.PubMedGoogle Scholar
  201. Ziebell, H., Murphy, A. M., Groen, S. C., Tungadi, T., Westwood, J. H., Lewsey, M. G., Moulin, M., Kleczkowski, A., Smith, A. G., Stevens, M., Powell, G., & Carr, J. P. (2012). Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Scientific Reports, 1, 187.Google Scholar
  202. Ziegler-Graff, V., & Brault, V. (2008). Role of vector-transmission proteins. Methods in Molecular Biology, 451, 81–96.PubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Muhammad Ali
    • 1
    • 2
    • 3
  • Sidra Anwar
    • 2
  • Malik Nawaz Shuja
    • 2
  • Rajiv Kumar Tripathi
    • 1
  • Jaswinder Singh
    • 1
  1. 1.Plant Science DepartmentMcGill University, Macdonald CampusQuebecCanada
  2. 2.Atta-ur-Rahman School of Applied Biosciences (ASAB)National University of Sciences and TechnologyIslamabadPakistan
  3. 3.Department of Life Sciences, School of ScienceUniversity of Management and TechnologyLahorePakistan

Personalised recommendations