Skip to main content
Log in

Efficiency of bacterial biosurfactant for biocontrol of Rhizoctonia solani (AG - 4) causing root rot in faba bean (Vicia faba) plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Publisher Correction to this article was published on 07 August 2019

This article has been updated

Abstract

Biosurfactants are a structurally diverse group of surface-active compounds produced by microorganisms, with numerous applications in different fields. In the present study, we evaluated the antifungal activity of a biosurfactant produced by Bacillus licheniformis against Rhizoctonia solani AG-4 that causes root rot in two cultivars of Vicia faba (Nubaria 1 & Sakha 1). Molasses and yeast extract as carbon and nitrogen sources exhibited maximum emulsification activity and fungal growth inhibition. Treatment with biosurfactant decreased the disease incidence from 62.11 to 20.00% in cv. Nubaria 1 and from 38.93 to 16.51% in case of cv. Sakha 1. Results revealed that growth parameters, photosynthetic pigments and endogenous phytohormones were markedly inhibited in faba bean, particularly in cv. Nubaria 1 plants, due to the root rot disease. Moreover, infection with R. solani caused an increase in lipid peroxidation content, non-enzymatic (phenolic and flavonoids compounds) and enzymatic antioxidants contents (phenylalanine ammonia lyase) as compared with healthy control plants. Biosurfactant application to the healthy and infected plants enhanced all the mentioned parameters except the lipid peroxidation content which showed significant reduction. Electrophoretic patterns of peroxidase, polyphenol oxidase and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments. Peroxidase and polyphenol oxidase showed increased activities in cv. Sakha 1 by BS application. It appears that application of bacterial biosurfactant was able to enhance the biological control of root rot disease of faba bean plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 07 August 2019

    Due to an unforeseen oversight, the articles listed below were initially incorrectly published in Vol. 153: Issue 1, This has been corrected.

References

  • Abd El-Hai, K. M., Ali, A. A., & El-Metwally, M. A. (2017). Down-regulation of damping-off and root rot diseases in lentil using kinetin and Trichoderma. International Journal of Agricultural Research, 12, 41–51.

    Google Scholar 

  • Ahed, A. H. M., & Kamil, S. J. (2013). Biological control of bean root rot disease caused by Rhizoctonia solani under green house and field conditions. Agriculture and Biology Journal of North America, 4(5), 512–519.

    Google Scholar 

  • AL-Hakimi, A. M. A., & Alghalibi, S. M. S. (2007). Thiamin and salicylic acid as biological alternatives for controlling broad bean rot disease. Journal of Applied Sciences and Environmental Management, 11(4), 125–131.

    Google Scholar 

  • Altschul, S. F., Thomas, L. M., Alejandro, A. S., Zhang, J., Zhang, Z., Miller, W., Lipman, & D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

  • Balogun, S. A., & Fagade, O. E. (2010). Emulsifying bacteria in produce water from Niger Delta, Nigeria. African Journal of Microbiology Research, 14(9), 730–734.

    Google Scholar 

  • Barna, B., Smigocki, C., & Baker, J. C. (2008). Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology, 98, 1242–1247.

    Article  CAS  PubMed  Google Scholar 

  • Bassoli, B. K., Cassolla, P., Borba-Murad, G. R., Constantin, J., Salgueiro-Pagadigorria, C. L., Bazotte, R. B., da Silva, R. S. . S. F., & de Souza, H. M. (2008). Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: Effects on hepatic glucose release and glycemia. Cell Biochemistry and Function, 26, 320–328.

  • Batish, D. R., Singh, H. P., Kaur, S., Kohli, R. K., & Yadav, S. S. (2008). Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). Journal of Plant Physiology, 165, 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin-Eagan, L. D., & Thorpe, T. A. (1985). Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Journal of Plant Physiology, 78, 438–441.

    Article  CAS  Google Scholar 

  • Bhosale, H. J., Kadam, T. A., & Phulari, S. (2014). Evaluation of antimicrobial activity and radical scavenging potential of lipopeptide biosurfactant from Klebsiella pneumoniae MSO-32. Journal of Pharmacy Research, 8(2), 139–143.

    Google Scholar 

  • Bodour, A. A., Drees, K. P., & Maier, R. M. (2003). Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Applied and Environmental Microbiology, 69(6), 3280–3287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooker, N., Windorski, J., & Blumi, E. (2008). Halogenated coumarins derivatives as novel seed protectants. Communication in Agriculture and Applied Biological Sciences, 73(2), 81–89.

    CAS  Google Scholar 

  • Cao, X. H., Zhen-Yu, L., Chun-Ling, W., Wen-Yan, Y., & Mei-Fang, L. (2009). Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of antiadhesive, antimicrobial and antitumor activities. Brazilian Journal of Microbiology, 40, 373–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin, M. F., & Kennedy, J. F. (1994). Carbohydrate analysis a practical approach (second ed.pp. 1–36). Oxford: IRL Press.

    Google Scholar 

  • Chauhan, M. K., Chaudhary, V. S., & Samar, S. K. (2011). Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews, 15(7), 3445–3453.

    Article  Google Scholar 

  • Ciapina, E. M., Melo, W. C., Santa Anna, L. M., Santos, A. S., Freire, D. M., & Pereira, N. J. (2006). Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Applied Biochemistry and Biotechnology, 131, 880–886.

    Article  PubMed  Google Scholar 

  • Dallagnol, L. J., Rodrigues, F. A., Martins, S. C. V., Cavatte, P. C., & DaMatta, F. M. (2011). Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australasian journal of Plant Pathology, 40, 360–365.

    Article  CAS  Google Scholar 

  • De Cal, A., Garcia-Lepe, R., & Melgarejo, P. (2000). Induced resistance by Penicillium oxalicum against Fusarium oxysporum f. sp. lycopersici: Histological studies of infected and induced tomato stems. Phytopathology, 90, 260–268.

    Article  PubMed  Google Scholar 

  • De Vleesschauwer, D., Xu, J., & Hofte, M. (2014). Making sense of hormone mediated defense networking: From rice to Arabidopsis. Frontiers in Plant Science, 5, 1–15.

    Article  Google Scholar 

  • Deb, M., Mandal, N., Sathiavelu, M., & Arunachalam, S. (2016). Application and future aspects of microbial biosurfactants – Review. Research Journal of Pharmaceutical, Biological and Chemical. Sciences, 7(4), 2803–2812.

    CAS  Google Scholar 

  • Elwakil, M. A., El-Refai, I. M., Awadallah, O. A., & Mohammed, M. S. (2009). Seed-borne pathogens of faba bean in Egypt: Detection and pathogenicity. Plant Pathology Journal, 8, 90–97.

    Article  Google Scholar 

  • Fakruddin, M. d. (2012). Biosurfactant: Production and application. Journal of Petroleum & Environmental Biotechnology, 3, 124.

    Google Scholar 

  • Fathabad, E. G. (2011). Biosurfactant in pharmaceutical industry: A mini-review, American Journal of Drug Discovery and. Development, 1(1), 58–69.

    Google Scholar 

  • Gandhimathi, R., Arunkumar, M., Selvin, J., Thangavelu, T., Sivaramakrishnan, S., Seghal Kiran, G., et al. (2008). Antimicrobial potential of sponge associated marine actinomycetes. Journal of Medical Mycology, 18, 16–22.

    Article  Google Scholar 

  • Gholamnezhad, J., Sanjarian, F., Goltapeh, E. M., Safaie, N., & Razavi, K. (2016). Effect of salicylic acid on enzyme activity in wheat in immediate early time after infection with Mycosphaerella graminicola. Scientia Agriculturae Bohemica, 47(1), 1–8.

    Article  Google Scholar 

  • Gomaa, E. Z. (2013). Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Brazilian Archives of Biology and Technology, 56(2), 259–268.

    Article  CAS  Google Scholar 

  • Goupy, P., Hugues, M., Biovin, P., & Amiot, M. J. (1999). Antioxidant com- position and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. Journal of the Science of Food and Agriculture, 79(12), 1625–1634.

    Article  CAS  Google Scholar 

  • Gudina, E. J., Rodrigues, A. I., Alves, E., Domingues, M. R., Teixeira, J. A., & Rodrigues, L. R. (2015). Bioconversion of agro-industrial by-products in rhamno lipids toward applications in enhanced oil recovery and bioremediation. Bioresource Technology, 177, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Habashy, S. R., Abd El-Mageed, M. H., Fawzy, R. N., Eid, K. E., & El-Sheme, H. S. A. (2016). Efficiency of some fungicides, plant extracts, chemical inducers and plant hormones on the management of damping-off and root rot diseases of Khaya senegalensis under greenhouse conditions. International Journal of Scientific & Engineering Research, 7, 930–944.

    Google Scholar 

  • He, H. Q., & Lin, W. X. (2001). Studies on allelopathic physiobiochemical characteristics of rice. Chinese Journal of Eco-Agriculture, 9, 56–57.

    Google Scholar 

  • Heath, R. L., & Packer, L. (1986). Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  Google Scholar 

  • Hertog, M. G. L., Hollman, P. C. H., & Katan, M. B. (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry, 40, 2379–2383.

    Article  CAS  Google Scholar 

  • Horn, J. N., Sengillo, J. D., Lin, D., et al. (2012). Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics. Biochimica et Biophysica Acta, 18, 212–218.

    Article  CAS  Google Scholar 

  • Jakupovic, M., Heintz, M., Reichmann, P., Mendgen, K., & Hahn, M. (2006). Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genetics and Biology, 43, 8_19.

  • Jiang, C. J., Shimono, M., Sugano, S., Kojima, M., Liu, X., Inoue, H., Sakakibara, H., & Takatsuji, H. (2013). Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Molecular Plant-Microbe Interactions Journal, 26, 287–296.

    Article  CAS  Google Scholar 

  • Joshi, S. J., Al-Wahaibi, Y. M., Al-Bahry, S. N., Elshafie, A. E., Al-Bemani, A. S., Al-Bahri, A., & Al-Mandhari, M. S. (2016). Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Frontiers in Microbiology, 7, 1853.

    PubMed  PubMed Central  Google Scholar 

  • Kamhawy, M. A. M. (2001). Studies on die-back disease of grapevine in A.R.E. Ph.D. Thesis, Fac. Agric., Zagazig Univ., Egypt, (pp. 258).

  • Kang, S. M., Radhakrishnan, R., & Lee, I. J. (2015). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World Journal of Microbiology and Biotechnology, 31, 1517–1527.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, A. L., & Benson, W. C. (1970). Variety specific variants of oxidative enzymes from soybean seeds. Crop Science, 10, 493–495.

    Article  CAS  Google Scholar 

  • Lattanzio, V., Lattanzio, V. M. T., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 23–67.

  • Lebeda A., jancova D., & Luhova L. (1999). Enzymes in fungal plant pathogenesis. Phyton (Horn, Austria) 39 (3), 51–56.

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic Biomemranes. Methods in Enzymology, 148, 350_82.

  • Lowry, O. H., Rosebrought, N. J., Farr, A., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 139, 265–274.

    Google Scholar 

  • Makoi, J. H. J. R., & Ndakidemi, P. A. (2007). Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. African Journal of Biotechnology, 6, 1358–1368.

    CAS  Google Scholar 

  • Manayi, A., Saeidnia, S., Faramarzi, M. A., Samadi, N., Jafari, S., Vazirian, M., Ghaderi, A., Mirnezami, T., Hadjiakhoondi, A., Ardekani, M. R. S., & Khanavi, M. (2013). A comparative study of anti-Candida activity and phenolic contents of the calluses from Lythrum salicaria L. in different treatments. Applied Biochemistry and Biotechnology, 170, 176–184.

    Article  CAS  PubMed  Google Scholar 

  • Marmath, K. K., Giri, P., Taj, G., Pandey, D., & Kumar, A. (2013). Effect of zeatin on the infection process and expression of MAPK-4 during pathogenesis of Alternaria brassicae in non-host and host Brassica plants. African Journal of Biotechnology, 12, 2164–2174.

    Article  CAS  Google Scholar 

  • Mattila, P., Astola, J., & Kumpulainen, J. (2000). Determination of flavonoids in plant material by HPLC with diode-Array and electro-Array detections. Journal of Agricultural and Food Chemistry, 48, 5834–5841.

    Article  CAS  PubMed  Google Scholar 

  • Muller, P., & Hilgenberg, W. (1986). Isomers of zeatin and zeatin riboside in club root tissue: Evidence for trans-zeatin bio-synthesis by Plasmadiophora brassicae. Plant Physiology, 66, 245–250.

    Article  Google Scholar 

  • Noronha, M. A., Michereff, S. J., & Mariano, R. L. R. (1995). Efeito do tratamento de sementes de caupi com Bacillus subtilis no controle de Rhizoctonia solani. Fitopatologia Brasileira, 20, 174–178.

    Google Scholar 

  • Osada, N., & Hiura, T. (2017). How is light interception efficiency related to shoot structure in tall canopy species? Oecologia, 185, 29–41.

    Article  PubMed  Google Scholar 

  • Pruthi, V., & Cameotra, S. (1995). Rapid method for monitoring maximum biosurfactant production obtained by acetone precipitation. Biotechnology Techniques, 9(4), 271–276.

    Article  CAS  Google Scholar 

  • Rochelle, P. A., Will, J. A. K., Fry, J. C., Jenkins, G. J. S., Parkes, R. J., Turley, C. M., & Weightman, A. J. (1995). In J. T. Trevors & J. D. van Elsas (Eds.), Nucleic acids in the environment. Berlin: Springer.

    Google Scholar 

  • Rodrigues, L. R., Teixeira, J. A., Van der Mei, H. C., & Oliveira, R. (2006). Physiochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 49(1), 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Ruzin, S. E. (1999). Plant microtechnques and microscopy (First ed.). USA: Oxfod University press.

  • Sachdev, D. P., & Cameotra, S. S. (2013). Biosurfactants in agriculture. Applied Microbiology and Biotechnology, 97, 1005–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadasivam, S., & Manickam, A. (1991). Biochemical Methods, second ed. new age international limited. New Delhi: Publishers.

    Google Scholar 

  • Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz, N., & Jabbar, A. (2010). Antimicrobial natural products: An update on future antibiotic drug candidates. Natural Product Reports, 27, 238–254.

    Article  CAS  PubMed  Google Scholar 

  • Samadhan, W., Chandrashekhar, K., Sneha, S., Priyanka, S., & Chaitanya, V. (2014). Low cost production of biosurfactant from different substrates and their comparative study with commercially available chemical surfactant. International Journal of Science and Technology Research, 3(3), 146–149.

    Google Scholar 

  • Sato, M., & Hasegawa, M. (1976). The latency of spinach chloroplast phenolase. Phytochemistry, 15, 61–65.

    Article  CAS  Google Scholar 

  • Schovánková, J., & Opatová, H. (2011). Changes in phenols composition and activity of phenylalanine-ammonia lyase in apples after fungal infections. Horticultural Science (Prague), 38, 1–10.

    Article  Google Scholar 

  • Shindy, W. W., & Smith, O. (1975). Identification of plant hormones from cotton ovules. Plant Physiology, 55, 550–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siciliano, M. J., & Shaw, C. R. (1976). Separation and visualization of enzymes on gels. In I. Smith [Ed.], Chromatographic and electrophoretic techniques (pp. 185-209). Heinemann Medical Books, London, U.K.

  • Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods. 7th edition. Ames: Iowa State University Press.

    Google Scholar 

  • Sneh, B. S., Jabaji-Hare, S., & Dijst, G. (1996). Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (p. 578). London: Kluwer Academic Publishers.

    Google Scholar 

  • Spanu, P. D., Abbott, J. C., Amselem, J., Burgis, T. A., Soanes, D. M., Stüber, K., & van Themaat, E. (2010). Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science, 15(10), 1543–1546.

    Article  CAS  Google Scholar 

  • Suresh, C. R., Lohitnath, T., & Mukesh, D. J. (2012). Production and characterization of biosurfurctant from Bacillus subtilis MTCC 441. Advances in Applied Science Research, 3(3), 1827–1831.

    Google Scholar 

  • Vanitha, S. C., Niranjana, S. R., & Umesha, S. (2009). Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology, 157, 552–557.

    Article  CAS  Google Scholar 

  • Velho, R. V., Medina, L. F., Segalin, J., & Brandelli, A. (2011). Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiologia (Praha), 56, 297–303.

    Article  CAS  Google Scholar 

  • Vernon, L. P., & Seely, G. R. (1966). The chlorophylls. New York: Academic Press.

    Google Scholar 

  • Wendel, J. F., & Weeden, N. F. (1989). Visualization and interpretation of plant isozymes. In D. E. Soltis & P. S. Soltis (Eds.), Isozymes in plant biology (pp. 18). London, UK: Chapman & Hall.

    Google Scholar 

  • Yamaji, K., & Ichihara, Y. (2012). The role of catechin and epicatechin in chemical defense against damping-off fungi of current-year Fagus crenata seedlings in natural forest. Forest Pathology, 42, 1–7.

    Article  Google Scholar 

  • Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., et al. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS One, 11(1), 1–15.

    Google Scholar 

  • Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., & Yu, J. Q. (2006). Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56, 255–262.

    Article  CAS  Google Scholar 

  • Youssef, A. S. M., & Abd El-Aal, M. M. M. (2014). Effect of kinetin and mineral fertilization on growth, flowering, bulbs productivity, chemical compositions and histological features of Hippeastrum vittatum plant. Journal of Plant Production, Mansoura Univ., 5(3), 357–381.

    Google Scholar 

  • Zhang, F., Gu, W., Xu, P., Tang, S., Xie, K., Huang, X., & Huang, Q. (2011). Effects of alkyl polyglycoside (APG) on composting of agricultural wastes. Waste Management, 31, 1333–1338.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Wang, X., Zhang, F., Dong, L., Wu, J., Cheng, et al. (2017). Phenylalanine ammonia-lyase 2.1 contributes to the soybean response towards Phytophthora sojae infection. Scientific Reports, 7, 7242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Dr. Eman M. Fawzy (Plant Microbiology, Faculty of Education, Ain Shams University) for her scientific and technical support and her helpful suggestions. We also acknowledge Prof. Dr. Mohamed H. Lotfy (Plant Taxonomy, Faculty of Education, Ain Shams University) for his assistance in the anatomical section of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Ageeb Akladious.

Ethics declarations

This research article is not submitted elsewhere for publication and this manuscript complies with the Ethical Rules applicable for this journal.

Competing interest

The authors declare that they have no competing interest.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akladious, S.A., Gomaa, E.Z. & El-Mahdy, O.M. Efficiency of bacterial biosurfactant for biocontrol of Rhizoctonia solani (AG - 4) causing root rot in faba bean (Vicia faba) plants. Eur J Plant Pathol 153, 1237–1257 (2019). https://doi.org/10.1007/s10658-018-01639-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01639-1

Keywords

Navigation