European Journal of Plant Pathology

, Volume 151, Issue 1, pp 141–153 | Cite as

Identification and characterization of responsive genes in rice during compatible interactions with pathogenic pathovars of Xanthomonas oryzae

  • Moein Khojasteh
  • Bahman Khahani
  • Mohsen Taghavi
  • Elahe Tavakol


Rice is a staple food for one-half of the world’s population. However, pathogenic pathovars of Xanthomonas oryzae can reduce rice yield up to 60%. To explore the molecular features of rice response to two pathogenic pathovars of X. oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), the differentially expressed genes (DEGs) were studied in four independent microarray experiments on infected versus non-infected leaves in rice 24 h after inoculation. The gene ontology (GO) analysis on DEGs demonstrated that while stress related genes were upregulated, the genes encoding photosynthesis components were down regulated in bacterial-infected rice. Moreover, some discrepancy of the genes function was depicted between the two pathovars of X. oryzae, including apoptosis specific to Xoo. Further analysis on cis-regulatory elements (CREs) on the promoter of responsive transcription factors (TFs) revealed the critical role of some hormones such as methyl jasmonate (MeJA) and abscisic acid (ABA) as well as light in the control of genes expression against the bacterial infection. We used a systematic approach to build a network among the responsive TFs that led to discovery of the OsWRKY53 and ERF2 effects on interaction between these pathovars and rice. We also detected miRNA target sites in some of the downregulated genes. These results provided an insight into the genes regulation against bacterial infection and introduced important candidate genes for further investigations in rice.


Microarray Transcription factors Cis-regulatory elements Xanthomonas oryzae 


Author Contributions

M.K. performed the analysis and wrote the draft of manuscript, B.Kh. assisted in analysis and writing the manuscript, M.T. and E.T. designed the project and provided critical revisions on the manuscript.

Compliance with ethical standards

Conflict of Interest and Ethical Statement

The authors declare no conflict of interest and accept and follow all ethical standard of the European J. of Plant pathology.

Supplementary material

10658_2017_1363_MOESM1_ESM.xlsx (616 kb)
ESM 1 (XLSX 615 kb)
10658_2017_1363_MOESM2_ESM.xlsx (765 kb)
ESM 2 (XLSX 764 kb)
10658_2017_1363_MOESM3_ESM.xlsx (20 kb)
ESM 3 (XLSX 19 kb)
10658_2017_1363_MOESM4_ESM.xlsx (114 kb)
ESM 4 (XLSX 113 kb)


  1. Agarwal, P. K., Agarwal, P., Reddy, M., & Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25(12), 1263–1274.CrossRefPubMedGoogle Scholar
  2. Alam, M., Tanaka, T., Nakamura, H., Ichikawa, H., Kobayashi, K., Yaeno, T., et al. (2015). Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnology Journal, 13(1), 85–96.CrossRefPubMedGoogle Scholar
  3. Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473–488.CrossRefPubMedGoogle Scholar
  4. Bazzini, A. A., Almasia, N. I., Manacorda, C. A., Mongelli, V. C., Conti, G., Maroniche, G. A., et al. (2009). Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biology, 9(1), 152.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Behnam, B., Iuchi, S., Fujita, M., Fujita, Y., Takasaki, H., Osakabe, Y., et al. (2013). Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Research, 20, 315–324.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bolívar, J. C., Machens, F., Brill, Y., Romanov, A., Bülow, L., & Hehl, R. (2014). ‘In silico expression analysis’, a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences. Database, 2014, bau030.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao, F. Y., Yoshioka, K., & Desveaux, D. (2011). The roles of ABA in plant–pathogen interactions. Journal of Plant Research, 124(4), 489–499.CrossRefPubMedGoogle Scholar
  8. Chang, C., Yu, D., Jiao, J., Jing, S., Schulze-Lefert, P., & Shen, Q.-H. (2013). Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. The Plant Cell, 25(3), 1158–1173.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen, X., Zhu, M., Jiang, L., Zhao, W., Li, J., Wu, J., et al. (2016). A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain. New Phytologist, 212(1), 161–175.CrossRefPubMedGoogle Scholar
  10. Cheong, J.-J., & Do Choi, Y. (2003). Methyl jasmonate as a vital substance in plants. Trends in Genetics, 19(7), 409–413.CrossRefPubMedGoogle Scholar
  11. Coll, N., Epple, P., & Dangl, J. (2011). Programmed cell death in the plant immune system. Cell Death and Differentiation, 18(8), 1247–1256.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38, W64–W70.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goodspeed, D., Chehab, E. W., Min-Venditti, A., Braam, J., & Covington, M. F. (2012). Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences, 109(12), 4674–4677.CrossRefGoogle Scholar
  14. Grewal, R. K., Gupta, S., & Das, S. (2012). Xanthomonas oryzae pv oryzae triggers immediate transcriptomic modulations in rice. BMC Genomics, 13(1), 49.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gutterson, N., & Reuber, T. L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 7(4), 465–471.CrossRefPubMedGoogle Scholar
  16. Habte, E., Müller, L. M., Shtaya, M., Davis, S. J., & Korff, M. (2014). Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant, Cell & Environment, 37(6), 1321–1337.CrossRefGoogle Scholar
  17. Hsu, P. Y., & Harmer, S. L. (2014). Wheels within wheels: the plant circadian system. Trends in Plant Science, 19(4), 240–249.CrossRefPubMedGoogle Scholar
  18. Jacques, M.-A., Arlat, M., Boulanger, A., Boureau, T., Carrère, S., Cesbron, S., et al. (2016). Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annual Review of Phytopathology, 54, 163–187.CrossRefPubMedGoogle Scholar
  19. Jeong, I. S., Fukudome, A., Aksoy, E., Bang, W. Y., Kim, S., Guan, Q., et al. (2015). Correction: Regulation of Abiotic Stress Signalling by Arabidopsis C-Terminal Domain Phosphatase-Like 1 Requires Interaction with a K-Homology Domain-Containing Protein. PLoS One, 10(10), e0140735.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jimmy, J. L., & Babu, S. (2015). Role of OsWRKY transcription factors in rice disease resistance. Tropical Plant Pathology, 40(6), 355–361.CrossRefGoogle Scholar
  21. Kapoor, D., Sharma, R., Handa, N., Kaur, H., Rattan, A., Yadav, P., et al. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontiers in Environmental Science, 3, 13.CrossRefGoogle Scholar
  22. Kim, D., Kwon, S., Choi, C., Lee, H., Ahn, I., Park, S., et al. (2013). Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene, 529(2), 208–214.CrossRefPubMedGoogle Scholar
  23. Kottapalli, K. R., Rakwal, R., Satoh, K., Shibato, J., Kottapalli, P., Iwahashi, H., et al. (2007). Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae. Plant Physiology and Biochemistry, 45(10), 834–850.CrossRefPubMedGoogle Scholar
  24. Kroj, T., Chanclud, E., Michel-Romiti, C., Grand, X., & Morel, J. B. (2016). Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytologist, 210(2), 618–626.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lam, E., Kato, N., & Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411(6839), 848–853.CrossRefPubMedGoogle Scholar
  26. Lee, I., Seo, Y.-S., Coltrane, D., Hwang, S., Oh, T., Marcotte, E. M., et al. (2011). Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences, 108(45), 18548–18553.CrossRefGoogle Scholar
  27. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325–327.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li, B., Gaudinier, A., Tang, M., Taylor-Teeples, M., Nham, N. T., Ghaffari, C., et al. (2014). Promoter-based integration in plant defense regulation. Plant Physiology, 166(4), 1803–1820.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu, H.-H., Tian, X., Li, Y.-J., Wu, C.-A., & Zheng, C.-C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14(5), 836–843.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Makino, S., Sugio, A., White, F., & Bogdanove, A. J. (2006). Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Molecular Plant-Microbe Interactions, 19(3), 240–249.CrossRefPubMedGoogle Scholar
  31. Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology, 8(4), 409–414.CrossRefPubMedGoogle Scholar
  32. Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.CrossRefPubMedGoogle Scholar
  33. Miyamoto, K., Shimizu, T., Mochizuki, S., Nishizawa, Y., Minami, E., Nojiri, H., et al. (2013). Stress-induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumulation in rice. Protoplasma, 250(1), 241–249.CrossRefPubMedGoogle Scholar
  34. Mohanta, T. K., Mohanta, N., Mohanta, Y. K., Parida, P., & Bae, H. (2015). Genome-wide identification of Calcineurin B-Like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events. BMC plant biology, 15(1), 189.Google Scholar
  35. Mondal, K. K., Verma, G., Junaid, A., & Mani, C. (2016). Rice pathogen Xanthomonas oryzae pv. oryzae employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight disease. European Journal of Plant Pathology, 144(2), 311–323.CrossRefGoogle Scholar
  36. Moustafa, K., & Cross, J. M. (2016). Genetic Approaches to Study Plant Responses to Environmental Stresses: An Overview. Biology, 5(2), 20.CrossRefPubMedCentralGoogle Scholar
  37. Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in plant science, 5, 170.Google Scholar
  38. Narsai, R., Wang, C., Chen, J., Wu, J., Shou, H., & Whelan, J. (2013). Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics, 14(1), 93.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nelson, D., & Werck-Reichhart, D. (2011). A P450-centric view of plant evolution. The Plant Journal, 66(1), 194–211.CrossRefPubMedGoogle Scholar
  40. Oide, S., Bejai, S., Staal, J., Guan, N., Kaliff, M., & Dixelius, C. (2013). A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. New Phytologist, 200(4), 1187–1199.CrossRefPubMedGoogle Scholar
  41. Pashaiasl, M., Ebrahimi, M., & Ebrahimie, E. (2016). Identification of the key regulating genes of diminished ovarian reserve (DOR) by network and gene ontology analysis. Molecular Biology Reports, 43(9), 923–937.CrossRefPubMedGoogle Scholar
  42. Peláez, P., & Sanchez, F. (2013). Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Frontiers in Plant Science, 4, 343.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Peskan-Berghöfer, T., Vilches-Barro, A., Müller, T. M., Glawischnig, E., Reichelt, M., Gershenzon, J., et al. (2015). Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytologist, 208(3), 873–886.CrossRefPubMedGoogle Scholar
  44. Qi, P.-F., Balcerzak, M., Rocheleau, H., Leung, W., Wei, Y.-M., Zheng, Y.-L., et al. (2016). Jasmonic acid and abscisic acid play important roles in host–pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight. Physiological and Molecular Plant Pathology, 93, 39–48.CrossRefGoogle Scholar
  45. Qiu, D., Xiao, J., Xie, W., Liu, H., Li, X., Xiong, L., et al. (2008). Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Molecular Plant, 1(3), 538–551.PubMedGoogle Scholar
  46. Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sana, T. R., Fischer, S., Wohlgemuth, G., Katrekar, A., Jung, K.-h., Ronald, P. C., et al. (2010). Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics, 6(3), 451–465.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sanan-Mishra, N., Kumar, V., Sopory, S. K., & Mukherjee, S. K. (2009). Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Molecular Genetics and Genomics, 282(5), 463.CrossRefPubMedGoogle Scholar
  49. Santino, A., Taurino, M., De Domenico, S., Bonsegna, S., Poltronieri, P., Pastor, V., et al. (2013). Jasmonate signaling in plant development and defense response to multiple (a) biotic stresses. Plant Cell Reports, 32(7), 1085–1098.CrossRefPubMedGoogle Scholar
  50. Seo, E., & Choi, D. (2015). Functional studies of transcription factors involved in plant defenses in the genomics era. Briefings in Functional Genomics, 14(4), 260–267.CrossRefPubMedGoogle Scholar
  51. Seo, Y.-S., Sriariyanun, M., Wang, L., Pfeiff, J., Phetsom, J., Lin, Y., et al. (2008). A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes. BMC Microbiology, 8(1), 99.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Seo, Y.-S., Chern, M., Bartley, L. E., Han, M., Jung, K.-H., Lee, I., et al. (2011). Towards establishment of a rice stress response interactome. PLoS Genetics, 7(4), e1002020.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Shaik, R., & Ramakrishna, W. (2013). Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice. PLoS One, 8(10), e77261.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shan, T., Rong, W., Xu, H., Du, L., Liu, X., & Zhang, Z. (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Scientific Reports, 6, 28777.Google Scholar
  55. Shao, F., Zhang, Q., Liu, H., Lu, S., & Qiu, D. (2016). Genome-Wide Identification and Analysis of MicroRNAs Involved in Witches’-Broom Phytoplasma Response in Ziziphus jujuba. PLoS One, 11(11), e0166099.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Singh, K. B., Foley, R. C., & Oñate-Sánchez, L. (2002). Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5(5), 430–436.CrossRefPubMedGoogle Scholar
  57. Sun, Y. V. (2012). Integration of biological networks and pathways with genetic association studies. Human Genetics, 131(10), 1677–1686.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43, D447–D452.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tameling, W. I., Vossen, J. H., Albrecht, M., Lengauer, T., Berden, J. A., Haring, M. A., et al. (2006). Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiology, 140(4), 1233–1245.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tavakol, E., Sardaro, M. L. S., Shariati, V., Rossini, L., & Porceddu, E. (2014). Isolation, promoter analysis and expression profile of Dreb2 in response to drought stress in wheat ancestors. Gene, 549(1), 24–32.CrossRefPubMedGoogle Scholar
  61. Tian, Y., Zhao, Y., Xu, R., Liu, F., Hu, B., & Walcott, R. (2014). Simultaneous Detection of Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola in Rice Seed Using a Padlock Probe-Based Assay. Phytopathology, 104(10), 1130–1137.CrossRefPubMedGoogle Scholar
  62. Van Eck, L., Davidson, R. M., Wu, S., Zhao, B. Y., Botha, A. M., Leach, J. E., & Lapitan, N. L. (2014). The transcriptional network of WRKY53 in cereals links oxidative responses to biotic and abiotic stress inputs. Functional & Integrative Genomics, 14(2), 351–362.CrossRefGoogle Scholar
  63. Van Ooijen, G., Mayr, G., Kasiem, M. M., Albrecht, M., Cornelissen, B. J., & Takken, F. L. (2008). Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany, 59(6), 1383–1397.CrossRefPubMedGoogle Scholar
  64. Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.CrossRefPubMedGoogle Scholar
  65. Wang, B., Shahzad, M. F., Zhang, Z., Sun, H., Han, P., Li, F., et al. (2014a). Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis. Biochemical and Biophysical Research Communications, 443(2), 756–760.CrossRefPubMedGoogle Scholar
  66. Wang, X., Yan, Y., Li, Y., Chu, X., Wu, C., & Guo, X. (2014b). GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS One, 9(4), e93577.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wilkins, K. E., Booher, N. J., Wang, L., & Bogdanove, A. J. (2015). TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors. Frontiers in plant science, 6, 536.Google Scholar
  68. Xu, M.-R., Huang, L.-Y., Zhang, F., Zhu, L.-H., Zhou, Y.-L., & Li, Z.-K. (2013). Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection. Plant Molecular Biology Reporter, 31(4), 877–885.CrossRefGoogle Scholar
  69. Yamamura, C., Mizutani, E., Okada, K., Nakagawa, H., Fukushima, S., Tanaka, A., et al. (2015). Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. The Plant Journal, 84(6), 1100–1113.CrossRefPubMedGoogle Scholar
  70. Yi, S. Y., Lee, H. Y., Kim, H. A., Lim, C. J., Kim, W. B., Jang, H. A., et al. (2013). Microarray Analysis of bacterial blight resistance 1 mutant rice infected with Xanthomonas oryzae pv. oryzae. Plant Breeding and Biotechnology, 1(4), 354–365.CrossRefGoogle Scholar
  71. Yi, X., Zhang, Z., Ling, Y., Xu, W., & Su, Z. (2015). PNRD: a plant non-coding RNA database. Nucleic Acids Research, 43(D1), D982–D989.CrossRefPubMedGoogle Scholar
  72. Yoshida, T., Fujita, Y., Maruyama, K., Mogami, J., Todaka, D., Shinozaki, K., et al. (2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell & Environment, 38(1), 35–49.CrossRefGoogle Scholar
  73. Song, Y., Ai, C., Jing, S., & Yu, D.(2010). Research progress on functional analysis of rice WRKY genes. Rice Science, 17(1), 60–72.Google Scholar
  74. Yu, C., Chen, H., Tian, F., Leach, J. E., & He, C. (2014). Differentially-expressed genes in rice infected by Xanthomonas oryzae pv. oryzae relative to a flagellin-deficient mutant reveal potential functions of flagellin in host–pathogen interactions. Rice, 7 (1), 20.Google Scholar
  75. Zang, D., Wang, C., Ji, X., & Wang, Y. (2015). Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities. Plant Science, 235, 111–121.CrossRefPubMedGoogle Scholar
  76. Zhou, Y.-L., Xu, M.-R., Zhao, M.-F., Xie, X.-W., Zhu, L.-H., Fu, B.-Y., et al. (2010). Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola. BMC Genomics, 11(1), 78.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zou, C., Sun, K., Mackaluso, J. D., Seddon, A. E., Jin, R., Thomashow, M. F., et al. (2011). Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 108(36), 14992–14997.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Moein Khojasteh
    • 1
  • Bahman Khahani
    • 2
  • Mohsen Taghavi
    • 1
  • Elahe Tavakol
    • 2
  1. 1.Department of Plant Protection, College of AgricultureShiraz UniversityShirazIran
  2. 2.Department of Crop Production and Plant Breeding, College of AgricultureShiraz UniversityShirazIran

Personalised recommendations