Skip to main content
Log in

The effect of salicylic and jasmonic acids on tomato physiology and tolerance to Cucumber mosaic virus (CMV)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cucumber mosaic virus (CMV) is one of the most important plant viruses responsible for sharp reductions in the production of many cultivated plants. Activities of antioxidant enzymes, photosynthetic capacity, proline and total soluble carbohydrates (TSC) content were measured in the leaves of tomato (Solanum lycopercicum cv. Falat) plants treated with phytohormones (salicylic and jasmonic acids and their combination) and inoculated with CMV at 0, 1, 2, 4, 6, 8, and 15 days after the treatments. Based on the results, catalase (CAT) activity decreased in the healthy and infected plants, but peroxidase (POD) activity increased in the CMV-infected plants signifying that POD is more active in H2O2 scavenging in tomato. Because the hormone treatments inhibited the reduction in the enzyme activity, it may be considered as a controlling method against CMV. Superoxide dismutase (SOD) activity was lower in the control until 6 days post inoculation (dpi), but increased after 8 dpi. The infected plants and the hormone-treated plants showed an increased SOD activity from 0 to 15 dpi. Phenylalanine ammonia lyase (PAL) activity also increased in all the treatments over the time period (0-15 dpi). Net photosynthesis (NP) rate and chlorophyll content decreased under the virus infection and hormone treatment, whereas control plants had the highest NP and chlorophyll content. Proline accumulation occurred in the infected and hormone- treated plants, but TSC content decreased in comparison to the control. Reduction of TSC content was not significant in the hormone and virus- treated plants. Expression of CMV coat protein gene (CMV-CP) was decreased by approximately 34% in SA+JA+CMV treatment in comparison to the CMV-infected plants. In conclusion, CMV had harmful effect on physiological traits of tomato plants, but hormone application induced resistance. This resistance may be accomplished through the combination of both hormone-related signaling pathways which likely established a strong resistance network together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd El-Gawad, H. G., & Bondok, A. M. (2015). Response of tomato plants to salicylic acid and chitosan under infection with Tomato mosaic virus. American-Eurasian Journal of Agricultural and Environmental Sciences, 15(8), 1520–1529.

    CAS  Google Scholar 

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Aldesuquy, H., Baka, Z., & Alazab, N. (2015). Shikimic and Salicylic acids induced resistance in faba bean plants against Chocolate Spot Disease. Journal of Plant Pathology and Microbiology, 6, 257–265.

    Google Scholar 

  • Ali, M. B., Hahn, E. J., & Paek, K. Y. (2007). Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules, 12, 607–621.

    Article  CAS  PubMed  Google Scholar 

  • Anzlovar, S., Kovac, M., & Ravnikar, M. (1996). Photosynthetic pigments in healthy and virus-infected potato plantlets (Solanum tuberosum L.) Grown in vitro. Phyton, 36(2), 221–230.

    CAS  Google Scholar 

  • Arnon, D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asghari, M., & Hasanlooe, A. R. (2015). Interaction effects of salicylic acid and methyl jasmonate on total antioxidant content, catalase and peroxidase enzymes activity in “Serosa” strawberry fruit during storage. Scientia Horticulturae, 197, 490–495.

    Article  CAS  Google Scholar 

  • Assis, J. S., Maldonado, R., Muñoz, T., Escribano, M. I., & Merodio, C. (2001). Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening Cherimoya fruit. Postharvest Biology and Technology, 23, 33–39.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldern, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signaling. Journal of experimental Botany, 65, 1229–1240.

    Article  CAS  PubMed  Google Scholar 

  • Boatwright, J. L., & Mukhtar, K. P. (2013). Salicylic acid: an old hormone up to new tricks. Molecular Plant Pathology, 14(6), 623–634.

    Article  CAS  PubMed  Google Scholar 

  • Burkhanova, G. F., Yarullina, L. G., & Maksimov, I. V. (2007). The control of wheat defense responses during infection with Bipolaris sorokiniana by chitooligosaccharides. Russian Journal of Plant Physiology, 54(1), 104–110.

    Article  CAS  Google Scholar 

  • Çag, S., Cevahir-Öz, G., Sarsag, M., & Gören-Saglam, N. (2009). Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pakistan Journal of Botany, 41, 2297–2303.

    Google Scholar 

  • Champigny, M. J., Shearer, H., Mohammad, A., Haines, K., Neumann, M., Thilmony, R., He, S. Y., Fobert, P., Dengler, N., & Cameron, R. K. (2011). Localization of DIR1 at the tissue, cellular and subcellular levels during systemic acquired resistance in Arabidopsis using DIR1: GUS and DIR1: EGFP reporters. BMC Plant Biology, 11, 125–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra, A., & Bhatt, R. K. (1998). Biochemical physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica, 35, 255–258.

    Article  CAS  Google Scholar 

  • Chen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceeding of Natural Academic Sciences of the United States of America, 102(9), 3459–3464.

    Article  CAS  Google Scholar 

  • Clarke, S. F., Guy, P. L., Burritt, D. J., & Jameson, P. E. (2002). Changes in activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiologia Plantarum, 114, 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Creissen, G., Firmin, J., Fryer, M., Kular, B., Leyland, N., Reynolds, H., Pastori, G., Wellburn, F., Baker, N., Wellburn, A., & Mullineaux, P. (1999). Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant Cell, 11, 1277–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species. Plant Signaling and Behavior, 3, 156–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cueto-Ginzo, A. I., Serrano, L., Bostock, R. M., Ferrio, J. P., Rodríguez, R., Arcal, L., Achon, M. A., Falcioni, T., Luzuriaga, W. P., & Medina, V. (2016). Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 93, 1–11.

    Article  CAS  Google Scholar 

  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 1–13.

    Article  CAS  Google Scholar 

  • Deng, X., Zhu, T., Peng, X., Xi, D., Guo, H., Yin, Y., Xang, D. W., & Lin, H. H. (2016). Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Scientific Reports, 6(1), 1–14.

    Article  Google Scholar 

  • Don, J., Wan, G., & Liang, Z. (2010). Accumulation of salycilic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148, 99–104.

    Article  Google Scholar 

  • Duan, Z., Lv, G., Shen, C., Li, Q., Qin, Z., & Niu, J. (2014). The role of jasmonic acid signalling in wheat (Triticum aestivum L.) powdery mildew resistance reaction. European Journal of Plant Pathology, 140(1), 169–183.

    Article  CAS  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, C., Karafyllidis, I., & Turner, J. G. (2002). Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Molecular Plant-Microbe Interactions, 15, 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  • Enyedi, A.J., Yalpani, N., Silverman, P., & Raskin, I. (1992). Localization, conjugation, and function of salicylic-acid in tobacco during the hypersensitive reaction to tobacco mosaic-virus. Proceedings of the National Academy of Sciences of the United States of America, 89, 2480-2484.

  • Fabro, G., Kovacs, I., Pavet, V., Szabados, L., & Alvarez, M. E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-Microbe Interactions, 17, 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Falcioni, T., Ferrio, J. P., del Cueto, A. I., Giné, J., Achón, M. Á., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and tolerance to Potato virus X infection. European Journal of Plant Pathology, 138, 331–345.

    Article  CAS  Google Scholar 

  • Gal-On, A., Kaplan, I., Roossinck, M. J., & Palukaitis, P. (1994). The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function for RNA 1 in virus movement. Virology, 205(1), 280–289.

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutase occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonda, T. J., & Symons, R. H. (1979). Cucumber mosaic virus replication in Cowpea protoplasts: time course of virus, coat protein and RNA synthesis. Journal of General Virology, 45, 723–736.

    Article  CAS  Google Scholar 

  • Hayat, S., & Ahmad, A. (2007). Salicylic acid: a plant hormone. The Netherlands: Springer.

    Book  Google Scholar 

  • Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3(4), 297–304.

    Article  CAS  Google Scholar 

  • Hemida, S. K. (2005). Effect of Bean yellow mosaic virus on physiological parameters of Vicia faba and Phaseolus vulgaris. International Journal of Agricultural Biology, 7, 154–157.

    Google Scholar 

  • Herlihy, E. A., Duffy, E. M., & Cassells, A. C. (2003). The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobotanica, 38, 201–207.

    Article  Google Scholar 

  • Hernandez, J. A., Gullner, G., Clemente-Morenoc, M. J., Künstlerb, A., Juhasz, C., Díaz-Vivancos, P., & Kiraly, L. (2015). Oxidative stress and antioxidative responses in plant-virus interactions. Physiological and Molecular Plant Pathology. https://doi.org/10.1016/j.pmpp.2015.09.001.

  • Kar, M., & Mishra, D. (1976). Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiology, 578, 315–319.

    Article  Google Scholar 

  • Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65, 729–735.

  • Khalil, R. R., Bassiouny, F. M., El-Dougdoug, K. A., Abo-Elmaty, S., & Yousef, M. S. (2014). A dramatic physiological and anatomical changes of tomato plants infecting with Tomato yellow leaf curl germinivirus. Journal of Agricultural Technology, 10(5), 1213–1229.

    Google Scholar 

  • Kiraly, L., Hafez, Y., Fodor, J., & Kiraly, Z. (2008). Suppression of Tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. The Journal of General Virology, 89, 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Kobeasy, M. I., El-Beltagi, H. S., El-Shazly, M. A., & Khattab, E. A. H. (2011). Induction of resistance in Arachis hypogaea L. against Peanut mottle virus by nitric oxide and salicylic acid. Physiological and Molecular Plant Pathology, 76, 112–118.

    Article  CAS  Google Scholar 

  • Koornneef, A., & Pieterse, C. M. J. (2008). Cross talk in defense signaling. Plant Physiology, 146, 839–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., Den Otter, F. C., Van Loon, L. C., & Pieterse, C. M. (2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiology, 147, 1358–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. C., Mustroph, A., Sasidharan, R., Vashisht, D., Pedersen, O., Oosumi, T., Voesenek, L. A. C. J., & BaileySerres, J. (2011). Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytologist, 190, 457–471.

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes, A., Spoel, S. H., De Lange, E. S., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F. F., Welschen, R. A., Ritsema, T., & Pieterse, C. M. (2009). Ethylene modulates the role of nonexpressor of pathogenesisrelated genes in cross talk between salicylate and jasmonate signaling. Plant Physiology, 149, 1797–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., Pieterse, C. M., & Ritsema, T. (2010). Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Molecular Plant-Microbe Interactions, 23, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Lewsey, M., Surette, M., Robertson, F. C., Ziebell, H., Choi, S. H., Ryu, K. H., Canto, T., Palukaitis, P., Payne, T., Walsh, J. A., & Carr, J. P. (2009). The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction. Molecular Plant-Microbe Interactions, 22(6), 642–654.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Qin, L., Zhao, J., Muhammad, T., Cao, H., Li, H., Zhang, Y., & Liang, Y. (2017). SlMAPK3 enhances tolerance to Tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE, 12(2), e0172466. https://doi.org/10.1371/journal.pone.0172466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, Y. W. K., Shi, K., Fu, L. J., Zhang, S., Li, X., Dong, D. K., Jiang, Y. P., Zhou, Y. H., Xia, X. J., Liang, W. S., & Yu, J. Q. (2012). The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. Planta, 235, 225–238.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Loake, G., & Grant, M. (2007). Salicylic acid in plant defense: the players and protagonists. Current Opinion in Plant Biology, 10, 466–472.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y., Shang, J., Zhao, P., Xi, D., Yuan, S., & Lin, H. (2011). Application of jasmonic acid followed by salicylic acid inhibits Cucumber mosaic virus replication. Plant Pathology Journal, 27(1), 53–58.

    Article  CAS  Google Scholar 

  • Montasser, M. S., Al-Own, F. D., Haneif, A. M., & Afzal, M. (2012). Effect of Tomato yellow leaf curl bigeminivirus (TYLCV) infection on tomato cell ultra-structure and physiology. Canadian Journal of Plant Pathology, 34, 114–125.

    Article  CAS  Google Scholar 

  • Murphy, A., & Carr, J. P. (2002). Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. Plant Physiology, 128, 552–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco, A. C., Cabral, C., Fermino, E. S., & Aleman, C. C. (2013). Salicylic acid induced changes to growth, flowering and flavonoids production in marigold plants. Journal of Medicinal Plants Researches, 7(42), 3158–3163.

    Google Scholar 

  • Palukaitis, P., & Carr, J. P. (2008). Plant resistance responses to viruses. Journal of Plant Pathology, 90(2), 153–171.

    CAS  Google Scholar 

  • Pazarlar, S., Gümüş, M., & Öztekin, G. (2013). The effects of Tobacco mosaic virus infection on growth and physiological parameters in some pepper varieties (Capsicum annuum L.) Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(2), 427–433.

    Article  Google Scholar 

  • Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Prohens, J., & Nuez, F. (2008). Vegetables I. Handbook of Plant Breeding (pp. 381-418). New York: Springer Co..

    Google Scholar 

  • Radwan, D. E., Fayez, K. A., Mahmoud, S. Y., Hamad, A., & Lu, G. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology and Biochemistry, 45, 480–489.

    Article  CAS  PubMed  Google Scholar 

  • Radwan, D. E. M., Lu, G., Fayez, K. A., & Mahmoud, S. Y. (2008). Protective action of salicylic acid against Bean yellow mosaic virus infection in Vicia faba leaves. Journal of Plant Physiology, 165, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M. V., & Davis, R. D. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant Journal, 17, 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defense: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz, A., Grant, M., & Jones, J. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. The Annual Review of Phytopathology, 49, 317–343.

    Article  CAS  PubMed  Google Scholar 

  • Ross, A. F. (1961). Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology, 14, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, T. S., Majumdar, U., Roy, A., Maiti, D., Goswamy, A. M., Bhattacharjee, A., Ghosh, S. K., & Ghosh, S. (2010). Production of nitric oxide in host-virus interaction: A case study with a compatible begomovirus-kenaf host-pathosystem. Plant Signaling and Behavior, 5, 668–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, T. A., & Melvin, E. H. (1956). Anthrone colorimetric method. In R. L. Whistler & M. L. Walfrom (Eds.), Methods in carbohydrate chemistry (Vol. 1, p. 384). New York: Academic Press.

    Google Scholar 

  • Sedghi, M., Seyed Sharifi, R., Pirzad, A. R., & Amanpour-Balaneji, B. (2012). Phytohormonal regulation of antioxidant systems in petals of drought stressed Pot Marigold (Calendula officinalis L.) Journal of Agricultural Science and Technology, 14, 869–878.

    CAS  Google Scholar 

  • Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2002). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.

    Article  Google Scholar 

  • Shang, J., Xi, D. H., Xu, F., Wang, S. D., Cao, S., Xu, M. Y., Zhao, P. P., Wang, J. H., Jia, S. D., Zhang, Z. W., Yuan, S., & Lin, H. H. (2011). A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta, 2, 299–308.

    Article  Google Scholar 

  • Siddique, Z., Akhtar, K. P., Hameed, A., Sarwar, N., Haq, I. U., & Khan, S. A. (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by Cotton leaf curl Burewala virus. Journal of Plant Interactions, 9, 702–711.

    Article  Google Scholar 

  • Sinha, A., & Srivastava, M. (2010). Biochemical changes in mung bean plants infected by Mung bean yellow mosaic virus. International Journal of Virology, 6, 150–157.

    Article  CAS  Google Scholar 

  • Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., & Pieterse, C. M. (2003). NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell, 15, 760–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens, J., Senaratna, T., & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regulation, 49, 77–83.

    CAS  Google Scholar 

  • Stewart, R. R. C., & Bewley, J. D. (1980). Lipid peroxidation associated aging of soybean axes. Plant Physiology, 65, 245–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar, N., Nagendra-Prasad, D., Mohan, N., & Murugesan, K. (2006). Induction of systemic resistance in Lycopersicon esculentum cv. PKM1 (tomato) against Cucumber mosaic virus by using ozone. Journal of Virological Methods, 139(1), 71–77.

    Article  PubMed  Google Scholar 

  • Tao, Y., Yu, Q., Zhou, Y., Shi, K., Zhou, J., Yu, J., & Xia, X. J. (2015). Application of 24-epibrassinolide decreases susceptibility to Cucumber mosaic virus in zucchini (Cucurbita pepo L.) Scientiae Horticulturae, 195, 116–123.

    Article  CAS  Google Scholar 

  • Van Wees, S.C.M., de Swart, E.A.M., Van Pelt, J.A., Van Loon, L.C., & Pieterse, C.M.J. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate dependent defense pathways in Arabidopsis thaliana. Proceeding of Natural Academic Sciences. U.S.A. 97, 8711-8716.

  • Vitti, A., La Monaca, E., Sofo, A., Scopa, A., Cuypers, A., & Nuzzaci, M. (2015). Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl, 60, 135–147.

    Article  CAS  Google Scholar 

  • Xue, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180, 911–921.

    Article  Google Scholar 

  • Yang, T., Meng, Y., Chen, L., Lin, H., & Xi, D. (2016). The roles of alpha-Momorcharin and jasmonic acid in modulating the response of Momordica charantia to cucumber mosaic virus. Frontiers in Micobiology, 7, 1–12.

    CAS  Google Scholar 

  • Zander, M., La Camera, S., Lamotte, O., Métraux, J. P., & Gatz, C. (2010). Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant Journal, 61, 200–210.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, F., Xi, D., Yuan, S., Xu,F., Zhang, D., & Lin, H. (2014). Salicylic acid and Jasmonic acid are essential for systemic resistance against Tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 27, 567-577.

  • Zitikaitė, I., & Urbanavičienė, L. (2010). Detection of natural infection by Cucumber mosaic virus in vegetable crops. Biologija, 56(1–4), 14–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Gholi-Tolouie.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

ESM 2

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholi-Tolouie, S., Sokhandan-Bashir, N., Davari, M. et al. The effect of salicylic and jasmonic acids on tomato physiology and tolerance to Cucumber mosaic virus (CMV). Eur J Plant Pathol 151, 101–116 (2018). https://doi.org/10.1007/s10658-017-1356-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1356-9

Keywords

Navigation