Skip to main content
Log in

A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York State

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium graminearum, a fungal pathogen of wheat, barley, and corn, produces a variety of trichothecene mycotoxins that are important as virulence factors and as seed contaminants reducing grain quality. A previous survey of the pathogen in New York State identified variation in genes indicative of trichothecene diversity. Recently F. graminearum strains that produce a newly characterized trichothecene mycotoxin called NX-2 have been identified in North America. Using a large collection of F. graminearum strains from Willsboro NY, we found that the frequency of NX-2 genotype strains was 7–14 times higher than at other locations where it was reported previously. NX-2 genotypes were not only found in wheat heads but also found in high frequency from air samples and on maize ears and stubble. Because NX-2 genotypes may represent as much as 20% of the total F. graminearum population, this regional fungal population provides an opportunity to assess the effects of the novel NX-2 trichothecene on fungal virulence, toxin loading, and patterns of host specificity that could inform future disease management and plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H., & Desjardins, A. E. (2002). Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genetics and Biology, 36, 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Gale, L. R., Ward, T. J., Balmas, V., & Kistler, H. C. (2007). Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology, 97, 1434–1439.

    Article  CAS  PubMed  Google Scholar 

  • Jansen, C., von Wettstein, D., Schafer, W., Kogel, K. H., Felk, A., & Maier, F. J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America, 102, 16892–16897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, A. C., Clear, R. M., O'Donnell, K., McCormick, S., Turkington, T. K., Tekauz, A., et al. (2015). Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genetics and Biology, 82, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, A., Proctor, R. H., Belzile, F., Chulze, S. N., Clear, R. M., Cowger, C., et al. (2016). The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Genetics and Biology, 95, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Kuhnem, P. R., Del Ponte, E. M., Dong, Y., & Bergstrom, G. C. (2015a). Fusarium graminearum isolates from wheat and maize in New York show similar range of aggressiveness and toxigenicity in cross-species pathogenicity tests. Phytopathology, 105, 441–448.

    Article  PubMed  Google Scholar 

  • Kuhnem, P. R., Spolti, P., Del Ponte, E. M., Cummings, J. A., & Bergstrom, G. C. (2015b). Trichothecene genotype composition of Fusarium graminearum not differentiated among isolates from maize stubble, maize ears, wheat spikes, and the atmosphere in New York. Phytopathology, 105, 695–699.

    Article  PubMed  Google Scholar 

  • Lee, T., Han, Y.-K., Kim, K.-H., Yun, S.-H., & Lee, Y.-W. (2002). Tri13 and Tri7 determine deoxynivalenol-and nivalenol-producing chemotypes of Gibberella zeae. Applied and Environmental Microbiology, 68, 2148–2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, J. M., Xayamongkhon, H., Broz, K., Dong, Y., McCormick, S. P., Abramova, S., et al. (2014). Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States. Fungal Genetics and Biology, 73, 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Liang, J., Lofgren, L., Ma, Z., Ward, T. J., & Kistler, H. C. (2015). Population subdivision of Fusarium graminearum from barley and wheat in the upper Midwestern United States at the turn of the century. Phytopathology, 105, 1466–1474.

    Article  CAS  PubMed  Google Scholar 

  • Maier, F. J., Miedaner, T., Hadeler, B., Felk, A., Salomon, S., Lemmens, M., et al. (2006). Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology, 7, 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. D., Greenhalgh, R., Wang, Y., & Lu, M. (1991). Trichothecene chemotypes of three Fusarium species. Mycologia, 83, 121–130.

    Article  CAS  Google Scholar 

  • O'Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623.

    Article  PubMed  Google Scholar 

  • Pestka, J. J. (2010). Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84, 663–679.

    Article  CAS  PubMed  Google Scholar 

  • Proctor, R. H., Hohn, T. M., & McCormick, S. P. (1995). Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molelucular Plant-Microbe Interactions, 8, 593–601.

    Article  CAS  Google Scholar 

  • Quarta, A., Mita, G., Haidukowski, M., Logrieco, A., Mulè, G., & Visconti, A. (2006). Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. FEMS Microbiology Letters, 259, 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Rep, M., & Kistler, H. C. (2010). The genomic organization of plant pathogenicity in fusarium species. Current Opinion in Plant Biology, 13, 420–426.

    Article  CAS  PubMed  Google Scholar 

  • Schmale, D. G., Wood-Jones, A. K., Cowger, C., Bergstrom, G. C., & Arellano, C. (2011). Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathology, 60, 909–917.

    Article  CAS  Google Scholar 

  • Schmeitzl, C., Varga, E., Warth, B., Kugler, K. G., Malachová, A., Michlmayr, H., et al. (2015a). Identification and characterization of carboxylesterases from Brachypodium distachyon deacetylating trichothecene mycotoxins. Toxins, 8, 6.

    Article  PubMed Central  Google Scholar 

  • Schmeitzl, C., Warth, B., Fruhmann, P., Michlmayr, H., Malachova, A., Berthiller, F., et al. (2015b). The metabolic fate of deoxynivalenol and its acetylated derivatives in a wheat suspension culture: Identification and detection of DON-15-O-glucoside, 15-acetyl-DON-3-O-glucoside and 15-acetyl-DON-3-sulfate. Toxins, 7, 3112–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., et al. (2007). Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology, 44, 1191–1204.

    Article  CAS  PubMed  Google Scholar 

  • van der Lee, T., Zhang, H., van Diepeningen, A., & Waalwijk, C. (2015). Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 32, 453–460.

    Google Scholar 

  • Varga, E., Wiesenberger, G., Hametner, C., Ward, T. J., Dong, Y. H., Schofbeck, D., et al. (2015). New tricks of an old enemy: Isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environmental Microbiology, 17, 2588–2600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E., & O'Donnell, K. (2002). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences of the United States of America, 99, 9278–9283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, T. J., Clear, R. M., Rooney, A. P., O'Donnell, K., Gaba, D., Patrick, S., et al. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45, 473–484.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Karen Broz for excellent technical support. This study was supported by the United States Department of Agriculture–Agricultural Research Service, National Program for Plant Disease and by the United States Department of Agriculture - National Institute of Food and Agriculture - Cornell University Hatch Project NYC1537436. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Corby Kistler.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lofgren, L., Riddle, J., Dong, Y. et al. A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York State. Eur J Plant Pathol 150, 791–796 (2018). https://doi.org/10.1007/s10658-017-1314-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1314-6

Keywords

Navigation