European Journal of Plant Pathology

, Volume 147, Issue 3, pp 671–681 | Cite as

Characterization of a unique copper resistance gene cluster in Xanthomonas campestris pv. campestris isolated in Trinidad, West Indies

  • Franklin Behlau
  • Alberto M. Gochez
  • Alshia Janel Lugo
  • Winston Elibox
  • Gerald V. Minsavage
  • Neha Potnis
  • Frank F. White
  • Mohamed Ebrahim
  • Jeffrey B. Jones
  • Adesh Ramsubhag


Whole genome sequencing of a copper resistant (CuR) black rot strain of Xanthomonas campestris pv. campestris (Xcc) isolated from a broccoli plant in Trinidad revealed a unique operon for copper resistance. The cop genes of strain Xcc-BrA1 were determined to be present on a 160 to 180 kb plasmid shown to be non-conjugative with other xanthomonads. While nucleotide comparison of a putative 8.0 Kbp copLABMGF gene cluster identified in Xcc-BrA1 genome did not reveal any homologous region with other known CuR Xanthomonas strains from diverse origins, the comparison of the translated amino acid sequence indicated similarity with X. citri, X. c. pv. citrumelonis and X. vesicatoria Cop proteins. Cloning of the copLAB gene cluster from Xcc-BrA1 conferred copper resistance to other copper-sensitive xanthomonads. Although Xcc-BrA1 harbors copLAB genes with similar sizes and organization and is able to grow on Cu-amended medium as other CuR xanthomonads, the phylogenetic analysis of nucleotide sequences indicates that the cop cluster in Xcc-BrA1 is unique and distantly related to other copLAB genes from Xanthomonas and Stenotrophomonas. The origin of copper resistance genes in Xcc-BrA1 is likely a result of horizontal gene acquisition from a still unknown phylloplane cohabitant. The findings of this study have implications for the management of crop diseases caused by CuR xanthomonads. Future studies could focus on and determining the distribution, overall importance and appropriate control measures for strains harbouring these unique genes.


Black rot disease Plasmid cop genes Acridine orange Phylogeny 



The authors wish to thank the staff of the Department of Life Sciences of the University of the West Indies, St. Augustine, Trinidad and Tobago, for their assistance in executing this study and Jose Huguet Tapia from the Department of Plant Pathology, University of Florida, Gainesville, for his help and expert comments and suggestions about the bioinformatics approach used in this study.


  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zheng Zhang, J. Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alvarez, A. M. (2000). Black rot of crucifers. In Mechanisms of resistance to plant diseases (pp. 21–52). Dordrecht: Springer.CrossRefGoogle Scholar
  3. Amuthan, G., & Mahadevan, A. (1994). Replicon typing of plasmids of phytopathogenic xanthomonads. Plasmid, 32(3), 328–332.CrossRefPubMedGoogle Scholar
  4. Andersen, G. L., Menkissoglou, O., & Lindow, S. E. (1991). Occurence and properties of copper-tolerant strains of Pseudomonas syringae isolated from fruit tress in California. Phytopathology, 81(6), 648–656.CrossRefGoogle Scholar
  5. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1999). Short protocols in molecular biology (4th ed.). New York: John Wiley and Sons Inc.Google Scholar
  6. Bender, C. L., & Cooksey, D. A. (1987). Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. Journal of Bacteriology, 169, 470–474.Google Scholar
  7. Basim, H., Stall, R. E., Minsavage, G. V., & Jones, J. B. (1999). Chromosomal gene transfer by conjugation in the plant pathogen Xanthomonas axonopodis pv. vesicatoria. Phytopathology, 89(11), 1044–1049.CrossRefPubMedGoogle Scholar
  8. Basim, H., Minsavage, G. V., Stall, R. E., Wang, J., Shanker, S., & Jones, J. B. (2005). Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 71(12), 8284–8291.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B., & Graham, J. H. (2011). Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology, 77(12), 4089–4096. doi: 10.1128/aem.03043-10.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Behlau, F., Canteros, B. I., Jones, J. B., & Graham, J. H. (2012a). Copper resistance genes from different xanthomonads and citrus epiphytic bacteria confer resistance to Xanthomonas citri subsp citri. European Journal of Plant Pathology, 133(4), 949–963. doi: 10.1007/s10658-012-9966-8.CrossRefGoogle Scholar
  11. Behlau, F., Jones, J. B., Myers, M. E., & Graham, J. H. (2012b). Monitoring for resistant populations of Xanthomonas citri subsp. citri and epiphytic bacteria on citrus trees treated with copper or streptomycin using a new semi-selective medium. European Journal of Plant Pathology, 132(2), 259–270.CrossRefGoogle Scholar
  12. Behlau, F., Hong, J. C., Jones, J. B., & Graham, J. H. (2013). Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology, 103(5), 409–418. doi: 10.1094/phyto-06-12-0134-r.CrossRefPubMedGoogle Scholar
  13. Bender, C. L., & Cooksey, D. A. (1986). Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. Journal of Bacteriology, 165(2), 534–541.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bender, C. L., Malvick, D. K., Conway, K. E., George, S., & Pratt, P. (1990). Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 56(1), 170–175.PubMedPubMedCentralGoogle Scholar
  15. Bolot, S., Roux, B., Carrere, S., Jiang, B., Tang, J., Arlat, M., & Noël, L. D. (2013). Genome sequences of three atypical Xanthomonas campestris pv. campestris strains, CN14, CN15, and CN16. Genome Announcements, 1(4), e00465–e00413.PubMedPubMedCentralGoogle Scholar
  16. Bouzar, H., Jones, J. B., Stall, R. E., Louws, F. J., Schneider, M., Rademaker, J. L. W., de Bruijn, F. J., & Jackson, L. E. (1999). Multiphasic analysis of xanthomonads causing bacterial spot disease on tomato and pepper in the Caribbean and Central America: evidence for common lineages within and between countries. Phytopathology, 89, 328–335.CrossRefPubMedGoogle Scholar
  17. Canteros, B. I.. (1996). Copper resistance in Xanthomonas campestris pv. citri. International Conference on Plant pathogenic Bacteria. 26–29 August, Madras, Chennai, India.Google Scholar
  18. Canteros, B. I., Minsavage, G. V., Pring, D. R., & Stall, R. E. (1989). Plasmid-encoded copper resistance in Xanthomonas campestris pv. vesicatoria. In: Klement, Z. (Ed.), Proceedings of the 7th International Conference on Plant Pathogenic Bacteria (pp. 351-356). Hungary: Akademiai Kiado, BudapestGoogle Scholar
  19. Canteros, B. I., Minsavage, G. V., Jones, J. B., & Stall, R. E. (1995). Diversity of plasmids in Xanthomonas campestris pv. vesicatoria. Phytopathology, 85(12), 1482–1486.CrossRefGoogle Scholar
  20. Canteros, B. I., Gochez, A. M., Rybak, M. A., Minsavage, G. V., Jones, J. B., & Stall, R. E. (2010). Management and characterization of plasmid-encoded copper resistance in Xanthomonas axonopodis pv. citri. International Conference on Plant Pathogenic Bacteria. 12. ICPPB. 2010 06 07–11, June 7–11, 2010. Saint-Denis, France. FR.Google Scholar
  21. Cervantes, C., & Gutierrez-Corona, F. (1994). Copper resistance mechanisms in bacteria and fungi. FEMS Microbiology Reviews, 14(2), 121–137.CrossRefPubMedGoogle Scholar
  22. Cha, J. S., & Cooksey, D. A. (1991). Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proceedings of the National Academy of Sciences, 88(20), 8915–8919.CrossRefGoogle Scholar
  23. Cooksey, D. A. (1990). Genetics of bactericide resistance in plant pathogenic bacteria. Annual Review of Phytopathology, 28, 201–219.CrossRefGoogle Scholar
  24. Crossman, V. C., Gould, J. M., Dow, G. S., Vernikos, A., Okazaki, M., Sebaihia, D., Saunders, C., Arrowsmith, T., Carver, N., Peters, E., Adlem, A., Kerhornou, A., Lord, L., Murphy, K., Seeger, R., Squares, S., Rutter, M. A., Quail, M. A., Rajandream, D., Harris, C., Churcher, S. D., Bentley, J., Parkhill, N. R., & Avison, M. B. (2008). The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biology, 9, R74.CrossRefPubMedPubMedCentralGoogle Scholar
  25. da Silva, A. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. A., Alves, L. M. C., & Do Amaral, A. M. (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417(6887), 459–463.CrossRefPubMedGoogle Scholar
  26. Efron, B., Halloran, E., & Holmes, S. (1996). Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Sciences, 93(23), 13429–13429.CrossRefGoogle Scholar
  27. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  28. Horvath, D. M., Stall, R. E., Jones, J. B., Pauly, M. H., Vallad, G. E., Dahlbeck, D., Staskawicz, B. J., & Scott, J. W. (2012). Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PloS One, 7(8), e42036. doi: 10.1371/journal.pone.0042036.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hötte, B., Rath-Arnold, I., Pühler, A., & Simon, R. (1990). Cloning and analysis of a 35.3-kilobase DNA region involved in exopolysaccharide production by Xanthomonas campestris pv. campestris. Journal of Bacteriology, 172(5), 2804–2807.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hsiao, Y., Liu, Y., Lee, P., Hsu, P., Tseng, S., & Pan, Y. (2011). Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. Journal of Agricultural and Food Chemistry, 59(17), 9290–9302.CrossRefPubMedGoogle Scholar
  31. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., & Schaad, N. W. (2004). Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27, 755–762.CrossRefPubMedGoogle Scholar
  32. Lee, Y. A., Hendson, M., Panopoulos, N. J., & Schroth, M. N. (1994). Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology, 176(1), 173–188.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lugo, A. J., Elibox, W., Jones, J. B., & Ramsubhag, A. (2013). Copper resistance in Xanthomonas campestris pv. campestris affecting crucifers in Trinidad. European Journal of Plant Pathology, 136, 1–10.Google Scholar
  34. Mellano, M. A., & Cooksey, D. A. (1988). Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. Journal of Bacteriology, 170(6), 2879–2883.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Minsavage, G. V., Canteros, B. I., & Stall, R. E. (1990). Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology, 80(8), 719–723.CrossRefGoogle Scholar
  36. Potnis, N., Krasileva, K., Chow, V., Almeida, N. F., Patil, P. B., Ryan, R. P., Sharlach, M., Behlau, F., Dow, J. M., Momol, M., White, F. F., Preston, J. F., Vinatzer, B. A., Koebnik, R., Setubal, J. C., Norman, D. J., Staskawicz, B. J., & Jones, J. B. (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics, 12, 146. doi: 10.1186/1471-2164-12-146.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E., & Jones, J. B. (2015). Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9), 907–920.CrossRefPubMedGoogle Scholar
  38. Qian, W., Jia, Y., Ren, S., He, Y., Feng, J., Lu, L., Sun, Q., Ying, G., Tang, D., & Tang, H. (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research, 15(6), 757–767.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning (Vol. 2). New York: Cold Spring Harbor Laboratory Press.Google Scholar
  40. Sigee, D. C. (2005). Bacterial plant pathology: Cell and molecular aspects. Cambridge: Cambridge University Press.Google Scholar
  41. Stall, R. E., Loschke, D. C., & Jones, J. B. (1986). Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology, 76(2), 240–243.CrossRefGoogle Scholar
  42. Staskawicz, B., Dahlbeck, D., Keen, N., & Napoli, C. (1987). Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. Journal of Bacteriology, 169(12), 5789–5794.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Swings, J., & Civerolo, E. L. (1993). Xanthomonas. London: Chapman & Hall.CrossRefGoogle Scholar
  44. Tamura, K., Stecher, G., Peterson, D., Peterson Filipski, A., et al. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. doi: 10.1093/molbev/mst197.
  45. Teixeira, E. C., Franco de Oliveira, J. C., Marques Novo, M. T., & Bertolini, M. C. (2008). The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: gene inactivation results in copper sensitivity. Microbiology, 154(2), 402–412.CrossRefPubMedGoogle Scholar
  46. Timilsina, S., Jibrin, M. O., Potnis, N., Minsavage, G. V., Kebede, M., Schwartz, A., Bart, R., Staskawicz, B., Boyer, C., & Vallad, G. E. (2015). Multilocus sequence analysis of Xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Applied and Environmental Microbiology, 81(4), 1520–1529.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Trevors, J. T. (1986). Plasmid curing in bacteria. FEMS Microbiology Reviews, 1(3–4), 149–157.CrossRefGoogle Scholar
  48. Vivian, A., Murillo, J., & Jackson, R. W. (2001). The roles of plasmids in phytopathogenic bacteria: mobile arsenals? Microbiology, 147(4), 763–780.CrossRefPubMedGoogle Scholar
  49. Voloudakis, A., Carol, E., Bender, L., & Cooksey, D. A. (1993). Similarity between copper resistance genes from Xanthomonas campestris and Pseudomonas syringae. Applied and Environmental Microbiology, 59(5), 1627–1634.PubMedPubMedCentralGoogle Scholar
  50. Voloudakis, A., Therese, E., Reignier, M., & Cooksey, D. A. (2005). Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Applied and Environmental Microbiology, 71(2), 782–789.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ward, H. P., & O’Garro, L. W. (1992). Bacterial spot of pepper and tomato in Barbados. Plant Disease, 76(10), 1046–1048.CrossRefGoogle Scholar
  52. Williams, P. H., Staub, T., & Sutton, J. C. (1972). Inheritance of resistance in Cabbage to black rot. Phytopathology, 62(2), 247–252.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Franklin Behlau
    • 1
  • Alberto M. Gochez
    • 2
  • Alshia Janel Lugo
    • 3
  • Winston Elibox
    • 3
  • Gerald V. Minsavage
    • 4
  • Neha Potnis
    • 4
  • Frank F. White
    • 5
  • Mohamed Ebrahim
    • 4
    • 6
  • Jeffrey B. Jones
    • 4
  • Adesh Ramsubhag
    • 3
  1. 1.Fundo de Defesa da Citricultura – FundecitrusSão PauloBrazil
  2. 2.Instituto Nacional de Tecnología Agropecuaria – INTACorrientesArgentina
  3. 3.Department of Life Sciences, Faculty of Science and TechnologyThe University of the West IndiesSt. AugustineRepublic of Trinidad and Tobago
  4. 4.Department of Plant PathologyUniversity of FloridaGainesvilleUSA
  5. 5.Department of Plant PathologyKansas State UniversityManhattanUSA
  6. 6.Department of Plant Pathology, Faculty of AgricultureAin Shams UniversityCairoEgypt

Personalised recommendations