Advertisement

European Journal of Plant Pathology

, Volume 147, Issue 2, pp 239–253 | Cite as

Evaluation of seedborne bacterial pathogens on common bean cultivars grown in central Anatolia region, Turkey

  • Kubilay Kurtulus Bastas
  • Fikrettin Sahin
Article

Abstract

Bacterial diseases of bean cause economically important losses worldwide. The most important method for managing bacterial diseases on bean is the use of pathogen-free seed. In this study, 198 different dry bean seed samples of six different cultivars including Dermason, Cali, Sira, Battal, Bombay and Seker, were collected from 12 provinces of Central Anatolia Region of Turkey. All were tested to investigate the seedlots as primary inoculum sources of the major bacterial diseases. The data revealed that 22,72 %, 13,63 %, 11,11 %, 1,51 % and 0.5 % of seed samples tested were contaminated with five seedborne bacterial pathogens, Pseudomonas savastanoi pv. phaseolicola (Psp), Pseudomonas syringae pv. syringae (Pss), Xanthomonas axonopodis pv. phaseoli (Xap), X. axonopodis pv. phaseoli var. fuscans (Xapf) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), respectively. All bacterial strains isolated were identified based on morphological, physiological, biochemical, molecular and pathogenicity tests. The results showed that Psp and Pss were found together on cv. Cali; Psp and Xap on cv. Dermason and cv. Sira; and Pss and Xap on cv. Seker, cv. Dermason, and cv. Cali. Therefore, the results in the present study suggested that evaluation and selection of pathogen-free seeds are very important for preventing the spread of pathogens and effective management of seed borne bacterial diseases prevalent in bean growing regions; in addition to implementation of integrated crop production strategies such as crop rotation, sanitation, seed treatment, tolerant/resistant cultivar selection and proper bactericide application.

Keywords

Bean cultivars Seedborne diseases Bacterial pathogens Identification, molecular characterization 

Notes

Compliance with ethical standards

Funding

This study was funded by Selcuk University Scientific Research Projects Coordinator’s.

References

  1. Aggour, A., Coyne, D. P., & Vidaver, A. (1988). Testing methods, resistance to seed transmission and genetics of the common blight disease reactions to Xanthomonas campestris pv. phaseoli in Phaseolis vulgaris. Annual report of the Bean Improvement Cooperative, 31, 75–76.Google Scholar
  2. Agrios, G. (1997). Plant Pathology (Fourth Edition) (p. p635). San Diego, USA: Academic Press.Google Scholar
  3. Allen, D.J., and J.M. Lenne. (1998). Disease as constraints to production of legumes in agriculture. (Eds Allen, D.J., and J.M. Lenne) The Pathology of Food and Pasture Legumes. Wallingford: CAB International, in pages 1–61.Google Scholar
  4. Anonymous. (2012). www.wikipedia.org/wiki/bean (access date: June, 2014)
  5. Ariyaratne, H. M., Coyne, D. P., Vidaver, A. K., & Eskridge, K. M. (1998). Selection for common bacterial blight resistance in common bean: effects of multiple leaf inoculation and detached pod inoculation test. Journal of the American Society for Horticultural Science, 123(5), 864–867.Google Scholar
  6. Ariyaratne, H. M., Coyne, D. P., Jung, G., Skroch, P. V., Vidaver, A. K., Steadman, J. R., Miklas, P. N., & Bassett, M. J. (1999). Molecular mapping of disease resistance genes for halo blight, common bacterial blight and bean common mosaic virus in a segregating population of common bean. Journal of the American Society for Horticultural Science, 124(6), 654–662.Google Scholar
  7. Arnaud-Santana, E., Coyne, D. P., Eskridge, K. M., & Vidaver, A. K. (1994). Inheritance, low correlations of leaf, pod, and seed reactions to common blight disease in common beans, and implications for selection. Journal of the American Society for Horticultural Science, 119, 116–121.Google Scholar
  8. Audy, P., Laroche, A., Saindon, G., Huang, H. C., & Gilbertson, R. L. (1994). Detection of the bean common blight bacteria, Xanthomonas campestris pv. phaseoli and X. C. phaseoli var. fuscans, using the polymerase chain reaction. Phytopathology, 84(10), 1185–1192.CrossRefGoogle Scholar
  9. Benlioglu, K., & Ozakman, M. (1993). Evaluation of two serological methods for the identification of halo blight pathogen (Pseudomonas savastanoi pv. phaseolicola) of beans. Journal of Turkish Phytopathology, 22, 75–84.Google Scholar
  10. Benlioglu, K., M. Ozakman, and Z. Onceler. (1994). Bacterial blight of beans in Turkey and resistance to halo blight and common blight. 9th Congress of the Mediterranean Phytopathological Union, September 18–24 1994, Kusadası, Aydın, 547–550.Google Scholar
  11. Bozkurt, I.A., and Soylu, S. (2001). Farklı Fasulye Çeşitlerinin Fasulye Hale Yanıklığı Etmeni P .s. pv. phaseolicola Irklarına Karşı Gösterdiği Reaksiyonların Belirlenmesi. Türkiye IX. Fitopatoloji Kongresi, 3–8 Eylul, Tekirdağ, p 506–514.Google Scholar
  12. Cafati, C. R., & Saettler, A. W. (1980a). Effect of host on multiplication and distribution of bean common blight bacteria. Phytopathology, 70, 675–679.CrossRefGoogle Scholar
  13. Cafati, C. R., & Saettler, A. W. (1980b). Transmission of Xanthomonas phaseoli in seeds of resistant and susceptible Phaseolus genotypes. Phytopathology, 70, 638–640.CrossRefGoogle Scholar
  14. Calzolari, A. (1999). Halo and Common Spot of Beans. Review of Plant Pathology, 77, p416.Google Scholar
  15. Cheng, G. Y., Legard, D. E., Hunter, J. E., & Burr, T. J. (1989). Modified Bean Pod Assay to Detect Strains of P. s. pv. syringae that Cause Bacterial Brown Spot of Snap Bean. Plant Disease, 73, 419–423.CrossRefGoogle Scholar
  16. Claflin, L. E., Vidaver, A. K., & Sasser, M. (1987). MXP, a semi-selective medium for Xanthomonas campestris pv. phaseoli. Phytopathology, 77(5), 730–734.CrossRefGoogle Scholar
  17. Coyne, D. P., & Schuster, M. L. (1983). Genetics and breeding for resistance to bacterial pathogens in vegetable crops. Hortscience, 18, 30–36.Google Scholar
  18. Coyne, D.P., F.N. Anderson, C.L. Ashburn, C.R. Fenster, A.F. Hagen, O.W. Howe, D.W. Lancaster, M.L. Schuster, and J.R. Steadman. (1973). Growing dry edible beans in Nebraska, Univ. of Nebraska (Lincoln) Agr. Expt. Sta. Bul. 527.Google Scholar
  19. Coyne, D. P., Nuland, D. S., & Lindgren, D. T. (1994). Effect of Population X. c. pv. phaseoli in Bean Reproductive Tissues on Seed Infection of Resistant and Susceptible Bean Genotypes. European Journal of Plant Pathology, 103(2), 175–181.Google Scholar
  20. Demir, G., & Gündogdu, M. (1994). Bacterial Diseases of Food Legumes in Aegean Region of Turkey and Effectivity of Some Seed Treatments against Bean Halo Blight. Journal of Turkish Phytopathology, 23, 57–66.Google Scholar
  21. Donmez, M.F. (2004). Determination of resistance against bacterial pathogens in various bean genotypes (Phaseolus vulgaris L.) grown in the provinces of Erzurum and Erzincan. Ataturk University (Ph.D. Thesis) p178.Google Scholar
  22. Draper, S. R. (1995). International Rules for Seed Testing. Seed Science and Technology, 3(2), 331.Google Scholar
  23. Dursun, A., Donmez, M. F., & Sahin, F. (2002). Identification of resistance to common bacterial blight disease on bean genotypes grown in Turkey. European Journal of Plant Pathology, 108, 811–813.CrossRefGoogle Scholar
  24. EPPO, (1997). Curtobacterium flaccumfaciens pv. flaccumfaciens. In Quarantine Pests for Europe, 2nd edn (Ed. Smith, IM, McNamara, DG, Scott, PR, Holderness, M), pp. 991–994. CAB International, Wallingford.Google Scholar
  25. Ertugrul, D., & Guven, K. (1998). Serological Properties of P. s. pv. phaseolicola Isolates Collected from Eskisehir. Tr. Journal of Biology, 22, 189–195.Google Scholar
  26. FAO. (2010). www.faostat.fao.org (access date: February 2014)
  27. FAO. (2015). Major Food and Agricultural Commodities and Producers – Countries by Commodity. Fao.org. (Retrieved 2 February 2015).
  28. Fourie, D. (2002). Distribution and severity of bacterial diseases on dry beans (Phaseolus vulgaris L.) in South Africa. Journal of Phytopathology, 150, 220–226.CrossRefGoogle Scholar
  29. Fourie D., Miklas P.N., Ariyarenthe H., (2005). Mapping three major genes conditioning resistance to six races of the halo blight pathogen in common bean. Proceedings of 1st International Edible Legume Conference and 4th World Cowpea Congress, Durban, South Africa, April 17–21, 24.Google Scholar
  30. Franc, G.D. (1998). Bacterial Diseases of Beans. Cooperative Extension Service, University of Wyoming.Google Scholar
  31. Frank, S.A. (1998). Foundations of social evolution, 1st edn. Princeton University Press: Princeton, 280p.Google Scholar
  32. Gilbertson, R. L., & Maxwell, D. P. (1992). Common bacterial blight of bean. In H. S. Chaube, J. Kumar, A. N. Mukhopadhyay, & U. S. Singh (Eds.), Plant diseases of international importance, Prentice Hall (Vol. II, pp. 18–39). New Jersey: Englewood Cliffs.Google Scholar
  33. Goncalves, E. R., & Rosato, Y. B. (2002). Phylogenetic analysis of Xanthomonas species based 16S–23S rDNA intergenic spacer sequences. International Journal of Systematic and Evolutionary Microbiology, 52, 355–361.CrossRefPubMedGoogle Scholar
  34. Goszczynska, T., & Serfontein, J. J. (1998). Milk tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. Journal of Microbiological Methods, 32(1), 65–72.CrossRefGoogle Scholar
  35. Hall, R. (1994). Compendium of Bean Diseases (pp. 25–27). St. Paul, Minnesota, USA: The American Phytopathological Society.Google Scholar
  36. Harveson, R. M., J.R. Steadman, and C.A. Urrea. (2010). Integrating Planting Dates and Fungicide Applications for Managing White Mold of Dry Beans in western Nebraska. Online Plant Health Progress doi: 10.1094/PHP 2010 0701-02-RS.
  37. Hayward, A. C., & Waterston, J. M. (1965). Corynebacterium flaccumfaciens. CMI Description of Pathogenic Fungi and Bacteria No. 43. Wallingford: CAB International.Google Scholar
  38. Hoitink, H. A. J., Hgedorn, D. J., & McCoy, E. (1968). Survival, transmission and taxonomy of Pseudomonas syringae van Hall, the causal organism of bacterial brown spot of bean (Phaseolus vulgaris). Canadian Journal of Microbiology, 14, 437–441.CrossRefPubMedGoogle Scholar
  39. Howard, R. J., Garland, J. A., & Seaman, W. L. (1994). Diseases and Pests of Vegetable Crops in Canada (p. pp554). Canada: The Canadian Phytopathological Society.Google Scholar
  40. Hsieh, T.F., H.C. Huang, H.H. Mündel, and R.S. Erickson. (2003) A Rapid Indoor Technique for Screening Common Bean (Phaseolus vulgaris L.) for Resistance to Bacterial Wilt [Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges) Collins and Jones]. Revista Mexicana de Fitopatologia, 370–374.Google Scholar
  41. Jung, H. H., Hergersberg, M., Vogt, M., Pahnke, J., Treyer, V., Rothlisberger, B., Kollias, S. S., Russo, D., & McLeod, F. B. M. (2003). Phenotype associated with a XK missense mutation without hematologic, neuromuscular, or cerebral involvement. Transfusion, 43, 928–938.CrossRefPubMedGoogle Scholar
  42. Kahveci, E., & Maden, S. (1994). Detection of Xanthomonas campestris pv. phaseoli and Pseudomonas syringae pv. phaseolicola by bacteriophages. Journal of Turkish Phytopathology, 23, 79–85.Google Scholar
  43. Karaca, I. (1977). Fitobakteriyoloji ve Bakteriyel Hastalıklar (270p). Matbaası, İzmir: Ege Üniv.Google Scholar
  44. Karavina, C., Tigere, T. A., & Chihiya, J. (2008). The contribution of soil and crop debris inocula to the outbreak of bacterial common blightin field beans (P. vulgaris) under Zimbabwean conditions. J. of. Sustainable Development in Africa, 10(3), 221–233.Google Scholar
  45. Karavina, C., Mandumbu, R., Parwada, C., & Zivenge., E. (2011). Epiphytic survival of Xanthomonas axonopodis pv. phaseoli (E. F SM). Journal of Animal and Plant Sciences, 9(2), 1161–1168.Google Scholar
  46. Lak, M. R., Shams-Bakhsh, M., & Bahar, M. (2002). Identification of the bacterial agent of bean leaf and pod blight in Markazi province. Journal of Science and Technology of Agriculture and Natural Resource, 6(1), 231–243.Google Scholar
  47. Leben, C. (1981). Bacterial pathogens: reducing seed and ın vitro survival by physical treatments. Plant Disease, 65, 876–878.CrossRefGoogle Scholar
  48. Lelliot, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases plants (199p). Oxford: Blackwell Scientific Publications.Google Scholar
  49. Maringoni, A. C., Camara, R. C., & Souza, V. L. (2006). Semi-selective culture medium for Curtobacterium flaccumfaciens pv. flaccumfaciens isolation from bean seeds. Seed Science and Technology, 34, 117–124.CrossRefGoogle Scholar
  50. Miklas, P. N., Delorme, R., & Riley, R. H. (2003). Identification of QTL conditioning resistance to white mold in a snap bean population. Journal of the American Society for Horticultural Science, 128, 564–570.Google Scholar
  51. Mohan, S.K., and D.J. Hagedorn. (1989). Additional bacterial diseases. pp. 303–319. In: H.F. Schwartz, and M.A. PastorCorrales (eds.). Bean production problems in the tropics. 2nd edition. Centro Internacional de Agricultura Tropical. Cali, Colombia. 654p.Google Scholar
  52. Mohan, S. K., & Schaad, N. W. (1987). An improved agar plating assay for detection Pseudomonas syringae pv. syringae and Peudomonas syringae pv. phaseolicola in contaminated bean seed. Phytopathology, 77, 1390–1395.CrossRefGoogle Scholar
  53. Myers, J. R., & Baggett, J. R. (1999). Improvement of snap beans. In S. Singh (Ed.), Common bean improvement for the twenty-first century (pp. 289–329). Boston: Kluwer Acad. Publ.CrossRefGoogle Scholar
  54. Nunes, W. M. C., Corazza, M. J., Souza, S. A. C. D., Tsai, S. M., & Kuramae, E. E. (2008). Characterization of Xanthomonas axonopodis pv. phaseoli isolates. Summa Phytopathologica, 34(3), 228–231.CrossRefGoogle Scholar
  55. Olivier, V., and P.M. Remeeus. (2004). Additional experiment to select the extraction and dilution buffer for the detection of Xanthomonas axonopodis pv. phaseoli in bean seeds. ISHI Report, Naktuinbouw, Research Report 0305 XAP.Google Scholar
  56. Opio, A. F., Teri, J. M., & Allen, D. J. (1993). Studies on seed transmission of Xanthomonas campestris pv. phaseoli in common beans in Uganda. African Crop Science Journal, 1(1), 59–67.Google Scholar
  57. Opio, A. F., Allen, D. J., & Teri, J. M. (1996). Pathogenic variation in Xanthomonas campestris pv. phaseoli, the causal agent of common bacterial blight in Phaseolus beans. Plant Pathology, 45, 1126–1133.CrossRefGoogle Scholar
  58. Park, S. J., Rupert, T., & Anderson, T. R. (1999). White mold: germplasm screening under various field conditions in Ontario. Annual report of the Bean Improvement Cooperative, 42, 51–52.Google Scholar
  59. Pike, D., L. Jess, and K. Delahaut. (2003). Pest management strategic plan for succulent edible legumes in North Central region. In: Navarro, F., Skroch, P., Jung, G. and Nienhuis, J. 2007. Quantitative trait loci associated with bacterial brown spot of Phaseolus vulgaris L. Crop Science, 47: 1344–1353.Google Scholar
  60. Prosen, D., Hatziloukas, E., Schaad, N. W., & Panopoulos, N. J. (1993). Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed by polymerase chain reaction-based amplification of a phaseolotoxin gene region. Phytopathology, 83(9), 965–970.CrossRefGoogle Scholar
  61. Ranalli, P., & Parisi, B. (1998). Viral and bacterial disease of French beans. Review of Plant Pathology, 77, 416.Google Scholar
  62. Rodriguez, N. M., Goncalves, L. C., Nogueira, F. S., Borges, A. L. C. C., & Zago, C. P. (1999). Forage sorghum silage with different tannin concentration and moisture in the stem. I - dry matter concentration, pH and fat acids during fermentation. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 51(5), 485–490.CrossRefGoogle Scholar
  63. Rosas, J. C., & Young, R. A. (1992). Response to selection for resistance to common bacterial blight in beans. Annual Report of the Bean Improvement Cooperative, 35, 86–87.Google Scholar
  64. Saettler, A. W. (1984). The Michigian bean seed-testing program for the detection of internally borne blight bacteria. Report of the Bean Improvement Cooperative, 27, 49–50.Google Scholar
  65. Saettler, A.W. (1989). Common bacterial blight in bean production problems in the tropics (eds. H. F. Schwart, M. A. Pastor-Corrales) Centro international de agriculture tropical, Chapter 11, 261–319.Google Scholar
  66. Saettler, A.W. (1991). Diseases caused by bacteria: CBB. p29–30. In: R. Hall (Ed.) Compendium of bean diseases, APS Press, St. Paul.Google Scholar
  67. Saettler, A. W., Stadt, S. J., & Pontius, L. T. (1981). Effects of inoculation time and cultivar on internal infection of bean seed by P. phaseolicola. Journal of Seed Technology, 6(3), 23–30.Google Scholar
  68. Sahin, F., Kotan, R., Abbasi, P. A., & Miller, S. A. (2003). Phenotypic and genotypic characterization of Xanthomonas campestris pv. zinniae strains. European Journal of Plant Pathollogy, 109, 165–172.CrossRefGoogle Scholar
  69. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory press. NY, US: Cold Spring Harbor.Google Scholar
  70. Schaad, N. W. (1982). Detection of seedborne bacterial plant pathogens. Plant Disease, 66, 885–890.CrossRefGoogle Scholar
  71. Schaad, N. W., Cheong, S. S., Tamaki, S., Haziloukas, E., & Panopoulos, N. J. (1995). A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology, 85, 243–248.CrossRefGoogle Scholar
  72. Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (third edition) American Phytopathological society press (373p). USA: St Paul.Google Scholar
  73. Schuster, M. L., & Coyne, D. P. (1981). Biology, epidemiology, genetics and breeding for resistance to bacterial blight pathogens of Phaseolus vulgaris L. Horticultural Reviews, 3, 28–58.Google Scholar
  74. Schuster, M. L., & Sayre, R. M. (1967). A coryneform bacterium induces purple colored seed and leaf hypertrophy of Phaseolus vulgaris and other Leguminosae. Phytopathology, 57(10), 1064–1066.Google Scholar
  75. Schuster, M. L., Coyne, D. P., Behre, T., & Leyna, H. (1983). Sources of Phaseolus species resistance and leaf and pod differential reactions to common blight. Hortscience, 18, 90–903.Google Scholar
  76. Schwartz, H. F. (1989). Bean production problems in the tropics (pp. 285–301). Colombia: C.I.A.T.Google Scholar
  77. Schwartz, H.F. (2005). Bacterial Diseases of Beans. Colorado State University, Fact Sheet No. 2913.Google Scholar
  78. Schwartz, H. F., & Galvez, G. E. (1981). Bean production and Pest Contrains in Latin America p. In H. F. Schwartz & G. E. Galvez (Eds.), Bean production problems in tropics (pp. 3–14). Cali, Colombia: Ctr. Int. Agr. Trop.Google Scholar
  79. Singh, S. P., & Munoz, C. G. (1999). Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Science, 39, 80–89.CrossRefGoogle Scholar
  80. Smith, I. M., Dunez, J., Lelliott, R. A., Philips, D. H., & Archer, S. A. (1988). European handbook of plant diseases (583p). London: Blackwell Scientific Publication.Google Scholar
  81. Sonmezalp, S. (1966). Fasulyelerde Önemli İki Bakteri Hastalığı (Corynebacterium flaccumfaciens ve Xanthomonas phaseoli). Bitki Koruma Bulteni, 6(3), 103–110.Google Scholar
  82. Sorensen, K. N., Kim, K. H., & Takemoto, J. Y. (1998). PCR detection of cyclic lipodepsinonapeptide producing pseudomonas syringae pv. Syringae and similarity of strains. Applied and Environmental Microbiology, 61, 226–230.Google Scholar
  83. Sutton, M. D., & Wallen, V. R. (1970). Epidemiological and ecological relations of Xanthomonas phaseoli and X. phaseoli Var. fuscans on bean in southwestern Ontario 1961–68. Canadian Journal of Botany, 48, 1329–1334.CrossRefGoogle Scholar
  84. Taylor, J. D. (1970). The quantitative estimation of the infection of bean seed with Pseudomonas phaseolicola (Burkh.) Dowson. The Annals of Applied Biology, 66, 29–36.CrossRefGoogle Scholar
  85. Tegli, S., Surico, G., & Esposito, A. (1998). Studi sulla diagnosi di Curtobacterium flaccumfaciens pv. flaccumfaciens nei semi di fagiolo. Notiziario sula Protezione delle Piante, 9, 63–71.Google Scholar
  86. Tegli, S., Sereni, A., & Surico, G. (2002). PCR-based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Letters in Applied Microbiology, 35, 331–337.CrossRefPubMedGoogle Scholar
  87. Toth, E. L., Serini, S. A., Wright, D. K., & Emig, A. G. (1998). Trends of public relations roles: 1990-1995. Public Relations Review, 24, 145–163.CrossRefGoogle Scholar
  88. Trigalet, A., and P. Bidaud. (1978). Some aspects of epidemiology of bean halo blight. in: Station de pathologie vegetale et Phytopathologie. Ed. Proc. 4th Inter. Conference on Plant Pathogenic Bacteria, Angers, France, Pages 895–-902.Google Scholar
  89. Valladares-Sanchez, N. E., Coyne, D. P., & Mumm, R. F. (1983). Inheritance and associations of leaf, external and internal pod reactions to common blight bacterium in Phaseolus vulgaris L. Journal of the American Society for Horticultural Science, 108, 272–278.Google Scholar
  90. Van Vuurde, J.W.L. and G. W. Van den Bovenkamp, (1989). Detection of Pseudomonas syringae pv. phaseolicola in bean. In Detection of Bacteria in Seed and Other Planting Material A.W. Saettler, N.W. Schaad and D.A. Roth (eds) The American Phytopathological Society Press, St. Paul, p30-40.Google Scholar
  91. Vidaver, A. K. (1993). Xanthomonas campestris pv. phaseoli: cause of common bacterial blight of bean. In J. G. Swings & E. L. Civerolo (Eds.), Xanthomonas (pp. 40–44). London: Chapman and Hall.Google Scholar
  92. Wallen, V. R., & Jackson, H. R. (1975). Model for yield loss determination of bacterial blight of field beans utilizing aerial infrared photography combined with field plot studies. Phytopathology, 65, 942–948.CrossRefGoogle Scholar
  93. Webster, D. M., Atkin, J. D., & Cross, J. E. (1983). Bacterial blight of snap beans and their control. Plant Disease, 67, 935–939.CrossRefGoogle Scholar
  94. Weller, D. M., & Saettler, A. W. (1980). Evaluation of seedborne Xanthomonas phaseoli and Xanthomonas phaseoli var. fuscans as primary inocula in bean blights. Phytopathology, 70, 148–152.CrossRefGoogle Scholar
  95. Yoshii, K., Galvez, G. E., & Alvarez, G. (1978). Screening bean germplasm for tolerance to common blight caused by Xanthomonas phaseoli and the importance of pathogenic variation to varietal improvement. Plant Disease Report, 62, 343–347.Google Scholar
  96. Yu, I. C., Parker, J., & Bent, A. F. (1998). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proceedings of the National Academy of Sciences of the United States of America, 95, 7819–7824.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zaiter, H. Z., Coyne, D. P., Vidaver, A. K., & Steadman, J. R. (1989). Differential reaction of tepary bean lines to Xanthomonas campestris pv. phaseoli. Hortscience, 24, 134–137.Google Scholar
  98. Zamani, Z., Bahar, M., Jacques, M. A., Lak, M. R., & Akhavan, A. (2011). Genetic diversity of the common bacterial blight pathogen of bean Xanthomonas axonopodis pv. phaseoli, in Iranrevealed by rep-PCR and PCR-RFLP analyses. World Journal of Microbiology and Biotechnology, 27, 2371–2378.CrossRefGoogle Scholar
  99. Zaumeyer, W. J., & Thomas, H. R. (1957). A monographic study of bean diseases and methods for their control. In Department of Agriculture, technical bulletin 868. Washington.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  1. 1.Department of Plant Protection, Fac. of Agric.Selcuk UniversityKonyaTurkey
  2. 2.Department of Genetics and Bioengineering, Faculty of EngineeringYeditepe UniversityIstanbulTurkey

Personalised recommendations