Advertisement

European Journal of Plant Pathology

, Volume 147, Issue 1, pp 7–14 | Cite as

Evaluation of Gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens

  • Hassan Etesami
  • Hossein Ali Alikhani
Article

Abstract

Gram-positive bacteria isolated from the rhizosphere and inside the roots of rice were characterized for plant growth promoting (PGP) traits and antifungal activity against some rice plant pathogenic fungi of rice. The results showed the endophytic and rhizosphere isolates had different PGP traits and antifungal activity. Only one rhizosphere isolate and one endophytic isolate showed highly inhibitory effects against the mycelial growth of all fungal rice pathogens tested in this study. The best bacterial isolates, based on multiple PGP traits and inhibitory effects against the mycelial growth of all fungal rice pathogens, were identified. Based on biochemical tests and by comparison of 16S rDNA sequences, the endophytic isolate REN3 and the rhizosphere isolate REN4 were closely related to Bacillus cereus and Bacillus mojavensis respectively. The broad-spectrum antifungal strains, the REN3 and REN4 isolates analyzed here, exert multiple PGP and antagonistic activity and represent an excellent option to be used as either potent bio-promoting or bio-control agents in rice under in vitro conditions. This application may help to minimize dependence on pesticides, which have adverse effects on the environment, finally leading to have sustainable environments. In conclusion, the results of antifungal activity showed rice harbors bacteria with a good potential in biocontrol of rice fungal pathogens.

Keywords

Rhizosphere and endophytic bacteria Rice PGPR Multiple PGP traits Antifungal activity 

Notes

Acknowledgments

We thank the Center of Excellence for Soil Quality Improvement for Balanced Plant Nutrition, Department of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran, for funding a part of this research.

References

  1. Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control, 47(3), 282–288.CrossRefGoogle Scholar
  2. Avis, T. J., Gravel, V., Antoun, H., & Tweddell, R. J. (2008). Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, 40(7), 1733–1740. doi: 10.1016/j.soilbio.2008.02.013.CrossRefGoogle Scholar
  3. Backman, P. A., & Sikora, R. A. (2008). Endophytes: an emerging tool for biological control. Biological Control, 46(1), 1–3. doi: 10.1016/j.biocontrol.2008.03.009.CrossRefGoogle Scholar
  4. Bell, C., Dickie, G., Harvey, W., & Chan, J. (1995). Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 41(1), 46–53.CrossRefGoogle Scholar
  5. Berg, G., & Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. In B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes (Eds ed., pp. 53–69). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  6. Chen, F., Wang, M., Zheng, Y., Luo, J., Yang, X., & Wang, X. (2010). Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber fusarium wilt by Bacillus Subtilis B579. World Journal of Microbiology and Biotechnology, 26(4), 675–684.CrossRefGoogle Scholar
  7. Costa, L. E. d. O., Queiroz, M. V. d., Borges, A. C., Moraes, C. A. d., & Araújo, E. F. d. (2012). Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Brazilian Journal of Microbiology, 43(4), 1562–1575.CrossRefGoogle Scholar
  8. Etesami, H., & Alikhani, H. A. (2016a). Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biological Control, 94, 11–24. doi: 10.1016/j.biocontrol.2015.12.003.CrossRefGoogle Scholar
  9. Etesami, H., & Alikhani, H. A. (2016b). Suppression of the fungal pathogen Magnaporthe grisea by Stenotrophomonas maltophilia, a seed-borne rice (Oryza sativa L.) endophytic bacterium. Archives of Agronomy and Soil Science (just-accepted).Google Scholar
  10. Etesami, H., Hosseini, H. M., & Alikhani, H. A. (2014a). Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiology and Molecular Biology of Plants, 20(4), 425–434.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Etesami, H., Hosseini, H. M., Alikhani, H. A., & Mohammadi, L. (2014b). Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. Journal of Plant Growth Regulation, 33(3), 654–670.CrossRefGoogle Scholar
  12. Garipova, S. R. (2014). Perspectives on using endophytic bacteria for the bioremediation of arable soils polluted by residual amounts of pesticides and xenobiotics. Biology Bulletin Reviews, 4(4), 300–310. doi: 10.1134/S2079086414040033.CrossRefGoogle Scholar
  13. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., & Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895–914.CrossRefGoogle Scholar
  14. Kobayashi, D., & Palumbo, J. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. Microbial endophytes, 199–233.Google Scholar
  15. Kuarabachew, H., Assefa, F., & Hiskias, Y. (2007). Evaluation of Ethiopian isolates of Pseudomonas fluorescens as biocontrol agent against potato bacterial wilt caused by Ralstonia (Pseudomonas) solanacearum. Acta Agriculturae Solvenica, 90(2), 125–135.Google Scholar
  16. Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6(12), 1244–1251.CrossRefPubMedGoogle Scholar
  17. Kumar, P., Dubey, R., & Maheshwari, D. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493–499.CrossRefPubMedGoogle Scholar
  18. Kurabachew, H., & Wydra, K. (2013). Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biological Control, 67(1), 75–83.CrossRefGoogle Scholar
  19. Li, X., Hu, B., Xu, Z., & Mew, T. (2003). Threshold population sizes of Bacillus Subtilis B5423-R to suppress the occurrence of rice sheath blight. China Journal Rice Science, 17(4), 360–364.Google Scholar
  20. Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by pseudomonas. Annual Review of Phytopathology, 39(1), 461–490.CrossRefPubMedGoogle Scholar
  21. Maheshwari, D., Aeron, A., Dubey, R., Agarwal, M., Dheeman, S., & Shukla, S. (2014). Multifaceted beneficial associations with pseudomonas and rhizobia on growth promotion of Mucuna pruriens L. Journal Pure Applied Microbiology, 8(6), 4657–4667.Google Scholar
  22. Manandhar, H., Lyngs Jørgensen, H., Mathur, S., & Smedegaard-Petersen, V. (1998). Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris Sorokiniana. Phytopathology, 88(7), 735–739.CrossRefPubMedGoogle Scholar
  23. Mendes, R., Pizzirani-Kleiner, A. A., Araujo, W. L., & Raaijmakers, J. M. (2007). Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Applied and Environmental Microbiology, 73(22), 7259–7267.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Newman, L. A., & Reynolds, C. M. (2005). Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends in Biotechnology, 23(1), 6–8. doi: 10.1016/j.tibtech.2004.11.010.CrossRefPubMedGoogle Scholar
  25. Patten, C. L., & Glick, B. R. (2002). Role of pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15.CrossRefPubMedGoogle Scholar
  27. Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187–193.CrossRefPubMedGoogle Scholar
  28. Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya, 17, 362–370.Google Scholar
  29. Rosenblueth, M., & Martínez-Romero, E. (2004). Rhizobium etli maize populations and their competitiveness for root colonization. Archives of Microbiology, 181(5), 337–344.CrossRefPubMedGoogle Scholar
  30. Sandhu, A., Halverson, L. J., & Beattie, G. A. (2009). Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities. Microbial Ecology, 57(2), 276–285.CrossRefPubMedGoogle Scholar
  31. Schwyn, B., & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56.CrossRefPubMedGoogle Scholar
  32. Song, F., & Goodman, R. M. (2001). Molecular biology of disease resistance in rice. Physiological and Molecular Plant Pathology, 59(1), 1–11.CrossRefGoogle Scholar
  33. Whipps, J. M. (1987). Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytologist, 107(1), 127–142.CrossRefGoogle Scholar
  34. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(suppl 1), 487–511.CrossRefPubMedGoogle Scholar
  35. Zinniel, D. K., Lambrecht, P., Harris, N. B., Feng, Z., Kuczmarski, D., Higley, P., et al. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology, 68(5), 2198–2208.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  1. 1.Department of Soil ScienceUniversity College of Agriculture & Natural Resources, University of TehranTehranIran

Personalised recommendations