European Journal of Plant Pathology

, Volume 146, Issue 4, pp 807–816 | Cite as

Genetic variation among Fusarium verticillioides isolates associated with Ethiopian maize kernels as revealed by AFLP analysis

  • Hadush Tsehaye
  • Abdelhameed Elameen
  • Anne Marte Tronsmo
  • Leif Sundheim
  • Arne Tronsmo
  • Dereje Assefa
  • May Bente Brurberg


Amplified fragment length polymorphism (AFLP) was used to study the genetic variation among 80 F. verticillioides isolates from kernels of Ethiopian maize, collected from 20 different maize growing areas in four geographic regions. A total of 213 polymorphic fragments were obtained using six EcoRI/MseI primer combinations. Analysis of the data based on all 213 polymorphic AFLP fragments revealed high level of genetic variation in the F. verticillioides entities in Ethiopia. About 58% of the fragments generated were polymorphic. The genetic similarity among F. verticillioides isolates varied from 46% to 94% with a mean Dice similarity of 73%. Unweighted Pair Group Method with Arithmetic Average (UPGMA) analysis revealed two main groups and four subgroups. The principal coordinate analysis (PCO) also displayed two main groups that agreed with the results of UPGMA analysis, and there was no clear pattern of clustering of isolates according to geographic origin. Analysis of molecular variance: (AMOVA) showed that only 1.5% of the total genetic variation was between geographic regions, while 98.5% was among isolates from the same geographic regions of Ethiopia. Eighty distinct haplotypes were recognized among the 80 isolates analyzed. Hence, breeding efforts should concentrate on quantitative resistance that is effective against all genotypes of the pathogen.


AFLP AMOVA Fusarium verticillioides Genetic variation 

Supplementary material

10658_2016_958_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)
10658_2016_958_MOESM2_ESM.pdf (197 kb)
Supplementary material 2 Dendrogram of 80 Fusarium verticillioides isolates obtained from kernels of maize produced in different geographic regions of Ethiopia and a reference isolate (MRC826) from South Africa, generated by UPGMA cluster analysis using 213 AFLP markers. The scale from 0.59 to 0.94 indicates genetic similarity calculated using Dice similarity coefficient in NTSYS (Rohlf 2005). The two main clusters are remarked as A and B (PDF 197 kb)


  1. Ayalew, A. (2010). Mycotoxins and surface and internal fungi of maize from Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 10, 4109–4123.CrossRefGoogle Scholar
  2. Bartók, T., Szécsi, Á., Szekeres, A., Mesterházy, Á., & Bartók, M. (2006). Detection of new fumonisin mycotoxins and fumonisin-like compounds by reversed-phase high-performance liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2447–2462.CrossRefPubMedGoogle Scholar
  3. Bonants, P. J., Hagenaar-de Weerdt, M., Man in’tVeld, W. A., & Baayen, R. P. (2000). Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum. Phytopathology, 90, 867–874.CrossRefPubMedGoogle Scholar
  4. Brown, D. W., Butchko, R. A., & Proctor, R. H. (2008). Genomic analysis of Fusarium verticillioides. Food Additives and Contaminants Part a, 25, 1158–1165.CrossRefGoogle Scholar
  5. Brown, D. W., Butchko, R. A., Busman, M., & Proctor, R. H. (2012). Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genetics and Biology, 49, 521–532.CrossRefPubMedGoogle Scholar
  6. Chang, S., Macêdo, D., Souza-Motta, C., & Oliveira, N. (2013). Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans. Genetics and Molecular Research, 12, 2863–2875.CrossRefPubMedGoogle Scholar
  7. Covarelli, L., Stifano, S., Beccari, G., Raggi, L., Lattanzio, V. M. T., & Albertini, E. (2012). Characterization of Fusarium verticillioides strains isolated from maize in Italy: fumonisin production, pathogenicity and genetic variability. Food Microbiology, 31, 17–24.CrossRefPubMedGoogle Scholar
  8. Cumagun, C. J. R., Ramos, J. S., Dimaano, A. O., Munaut, F., & Van Hove, F. (2009). Genetic characteristics of Fusarium verticillioides from corn in the Philippines. Journal of General Plant Pathology, 75, 405–412.CrossRefGoogle Scholar
  9. Daie Ghazvini, R., Mirhendi, H., Ghiasian, S., Masoudi-Nejad, A., Shokri, H., Soltani, M., et al. (2011). Genotyping of Fusarium verticillioides strains producing fumonisin B1 in feed associated with animal health problems. Iranian Journal of Veterinary Research, 12, 309–316.Google Scholar
  10. Darnetty, T., & Salleh, B. (2013). Toxigenicity of Fusarium species in Gebberella fujikuroi species complex associated with stalk and ear rot disease of corn. International Journal of Phytopathology, 2, 147–154.Google Scholar
  11. Dehkordi, M. K., Javan-Nikkhah, M., Morid, B., Rahjoo, V., & Hajmansoor, S. (2013). Analysis of the association between Fusarium verticillioides strains isolated from rice and corn in Iran by molecular methods. European Journal of Experimental Biology, 3, 90–96.Google Scholar
  12. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.Google Scholar
  13. Halstensen, A. S., Nordby, K.-C., Klemsdal, S. S., Elen, O., Clasen, P.-E., & Eduard, W. (2006). Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust. Journal of Occupational and Environmental Hygiene, 3, 651–659.CrossRefPubMedGoogle Scholar
  14. Harrison, L. R., Colvin, B. M., Greene, J. T., Newman, L. E., & Cole, J. R. (1990). Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. Journal of Veterinary Diagnostic Investigation, 2, 217–221.CrossRefPubMedGoogle Scholar
  15. Kellerman, T. S., Marasas, W., Thiel, P., Gelderblom, W., Cawood, M., & Coetzer, J. A. (1990). Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1. Onderstepoort Journal of Veterinary Research, 57, 269–275.PubMedGoogle Scholar
  16. Leslie, J. F. (1995). Gebberella fujikuroi: available populations and variable traits. Canadian Journal of Botany, 73, 282–291.CrossRefGoogle Scholar
  17. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames: Blackwell Publishing Professional.CrossRefGoogle Scholar
  18. Leslie, J. F., Anderson, L. L., Bowden, R. L., & Lee, Y. W. (2007). Inter-and intra-specific genetic variation in Fusarium. International Journal of Food Microbiology, 119, 25–32.CrossRefPubMedGoogle Scholar
  19. Lin, B. (2013). Movement and structure of atmospheric populations of Fusarium (169 pp). PhD Dissertation: Virginia Polytechnic Institute and State University, USA.Google Scholar
  20. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321–3323.Google Scholar
  21. O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences, 95, 2044–2049.CrossRefGoogle Scholar
  22. Ono, E. Y. S., Fungaro, M. H. P., Sofia, S. H., Miguel, T. d. Á., Sugiura, Y., & Hirooka, E. Y. (2010). Fusarium verticillioides strains isolated from corn feed: characterization by fumonisin production and RAPD fingerprinting. Brazilian Archives of Biology and Technology, 53, 953–960.CrossRefGoogle Scholar
  23. Pamphile, J. A., & Azevedo, J. L. (2002). Molecular characterization of endophytic strains of Fusarium verticillioides (= Fusarium moniliforme) from maize (Zea mays. L). World Journal of Microbiology and Biotechnology, 18, 391–396.CrossRefGoogle Scholar
  24. Patiño, B., Mirete, S., Vázquez, C., Jiménez, M., Rodríguez, M. T., & González-Jaén, M. T. (2006). Characterization of Fusarium verticillioides strains by PCR-RFLP analysis of the intergenic spacer region of the rDNA. Journal of the Science of Food and Agriculture, 86, 429–435.CrossRefGoogle Scholar
  25. Presello, D., Botta, G., Iglesias, J., & Eyhérabide, G. (2008). Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with Fusarium verticillioides. Crop Protection, 27, 572–576.CrossRefGoogle Scholar
  26. Proctor, R. H., Brown, D. W., Plattner, R. D., & Desjardins, A. E. (2003). Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genetics and Biology, 38, 237–249.CrossRefPubMedGoogle Scholar
  27. Ren, X., Zhu, Z. D., Li, H. J., Duan, C. X., & Wang, X. M. (2012). SSR marker development and analysis of genetic diversity of Fusarium verticillioides isolated from maize in China. Scientia Agricultura Sinica, 45, 52–66.Google Scholar
  28. Reynoso, M., Chulze, S., Zeller, K., Torres, A., & Leslie, J. (2009). Genetic structure of Fusarium verticillioides populations isolated from maize in Argentina. European Journal of Plant Pathology, 123, 207–215.CrossRefGoogle Scholar
  29. Rocha, L. D., Reis, G. M., Da Silva, V. N., Braghini, R., Teixeira, M. M. G., & Correa, B. (2011). Molecular characterization and fumonisin production by Fusarium verticillioides isolated from corn grains of different geographic origins in Brazil. International Journal of Food Microbiology, 145, 9–21.CrossRefGoogle Scholar
  30. Rohlf, F. (2005). NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.2. New York: Exeter Publishing Ltd..Google Scholar
  31. Schmale, D. G., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., & Bergstrom, G. C. (2006). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology, 96, 1021–1026.CrossRefGoogle Scholar
  32. Sneath, P. A., & Sokal, R. R. (1973). Numerical taxonomy. The principles and practices of numerical classification. San Francisco: Freeman.Google Scholar
  33. Stępień, Ł., Koczyk, G., & Waśkiewicz, A. (2011). FUM cluster divergence in fumonisins-producing Fusarium species. Fungal Biology, 115, 112–123.CrossRefPubMedGoogle Scholar
  34. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Waśkiewicz, A., Beszterda, M., & Goliński, P. (2012). Occurrence of fumonisins in food-an interdisciplinary approach to the problem. Food Control, 26, 491–499.CrossRefGoogle Scholar
  36. Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.CrossRefGoogle Scholar
  37. Worku, M., Twumasi Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., et al. (2012). Meeting the challenges of global climate change and food security through innovative maize research. Proceedings of the third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia; 18–20 April, 2011. Mexico, DF: CIMMYTGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Hadush Tsehaye
    • 1
    • 2
  • Abdelhameed Elameen
    • 3
  • Anne Marte Tronsmo
    • 1
  • Leif Sundheim
    • 1
    • 3
  • Arne Tronsmo
    • 4
  • Dereje Assefa
    • 2
  • May Bente Brurberg
    • 1
    • 3
  1. 1.Department of Plant SciencesNorwegian University of Life SciencesÅsNorway
  2. 2.Department of Dryland Crop and Horticultural SciencesMekelle UniversityMekelleEthiopia
  3. 3.Biotechnology and Plant Health DivisionNorwegian Institute for Bioeconomy ResearchÅsNorway
  4. 4.Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway

Personalised recommendations