European Journal of Plant Pathology

, Volume 146, Issue 1, pp 129–145 | Cite as

Occurrence and characterization of a new red-pigmented variant of Curtobacterium flaccumfaciens, the causal agent of bacterial wilt of edible dry beans in Iran

  • Ebrahim Osdaghi
  • S. Mohsen Taghavi
  • Habiballah Hamzehzarghani
  • Amal Fazliarab
  • Robert M. Harveson
  • Jay Ram Lamichhane


A number of crop diseases are emerging at an alarming rate worldwide. Bacterial wilt of dry beans, caused by Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), is one of them. In Iran, this disease was first reported in 2012, which, since then, has rapidly spread across the major dry bean growing areas of the country causing severe yield losses. Previously, only two colony variants (yellow and orange) of the pathogen had been described from Iran in association with bacterial wilt of dry beans. In this study, we describe a new red-pigmented variant of Cff, isolated from dry bean seeds stored in seed banks of Khomein Bean Research Station, the major seed supplier in the region. Because Cff is a quarantine pathogen in Iran and elsewhere, with a potential threat for dry bean productions, more knowledge about the biology of this pathogen and epidemiology of the disease it causes are a prerequisite for the development of effective disease management strategies. Within this framework, we performed phenotypic and genetic characterization of the red-pigmented variant of the pathogen, in comparison with previously isolated yellow and orange variants, including pathogenicity, host range, bacteriocin production and genetic diversity. Our results showed a similar host range of different Cff variants although they differed in their aggressiveness. Yellow and orange variants of the pathogen were more aggressive on cowpea and common bean, respectively while the red variant showed the same level of aggressiveness on both hosts. Orange- and red-pigmented strains were separated from yellow-pigmented strains in the phylogeny of gyrB sequences. All orange- or red-pigmented strains were clustered in a separate branch from yellow-pigmented strains, except strain CffK31, in phylogeny based on rpoB sequences. In BOX-PCR analysis, Cff strains used in this study were clustered in two distinct genetic groups, with yellow variants of the pathogen separated from the orange and red variants. Overall, our results provide evidence of a remarkable diversity of Cff in Iran, which needs further in-depth investigation.


Pigmentation Dry beans Emerging disease Actinomycetes 



We thank the following institutions: Negin Bazre Pars co. in Khomein County, Markazi province for providing common bean seeds (cvs. Sadri, Derakhshan, Dorsa), Plant Improvement Institute (SPII) in Karaj, Alborz province for providing soybean seeds (cv. Katool), and Agricultural and Natural Resources Research Center of Safiabad, in Khuzestan province for supplying mung bean (cvs. L173 and Partow) and cowpea (cvs. L1057 and Mashhad) seeds. Financial support for this study was provided by Shiraz University.

Supplementary material

10658_2016_900_MOESM1_ESM.docx (14 kb)
Table S1 Twenty plant-associated bacterial strains used in this study as bacteriocin indicator strains. The grey color scale shows the differences in sensitivity patterns among the indicator strains to the bacteriocins of yellow- (20Y), red- (50R), and orange- (80O) pigmented variants of Curtobacterium flaccumfaciens pv. flaccumfaciens. The sensitivity groups show the statistically different groups generated in Duncan grouping analysis (Fig. 2) (DOCX 14 kb)
10658_2016_900_MOESM2_ESM.jpg (758 kb)
Fig. S1 Production of bacteriocin by Curtobacterium flaccumfaciens pv. flaccumfaciens (called as producer strains) against different plant pathogenic bacteria (called as indicator strains). Clear zones appeared around the colonies of producer strains indicate inhibition after 3 days post incubation. a: strain 80O vs Pectobacterium carotovorum subsp. carotovorum, b: strain 20Y vs Pseudomonas fluorescens (CHAO), c: strain 80O vs Rhodococcus fascians, and d: strain 20Y vs Agrobacterium tumefaciens (JPG 757 kb)
10658_2016_900_MOESM3_ESM.jpg (277 kb)
Fig. S2 Agarose gel of PCR products obtained with the primer pairs CF4/CF5 (198 bp; a) and CffFOR2/CffREV4 (306 bp; b). Lanes: 1-20: bacterial strains as numbered in Table 1. 21: Xanthomonas axonopodis pv. phaseoli strain Araxa1, 22: 100 bp DNA Ladder. All the Curtobacterium flaccumfaciens strains were detected with the primer pairs, except strains CffG105 and Cmmeg20 which were isolated from tomato and eggplant, respectively (JPG 276 kb)


  1. Agarkova, I. V., Lambrecht, P. A., Vidaver, A. K., & Harveson, R. M. (2012). Genetic diversity among Curtobacterium flaccumfaciens pv. flaccumfaciens populations in the American High Plains. Canadian Journal of Microbiology, 58, 788–801. doi: 10.1139/W2012-052.CrossRefPubMedGoogle Scholar
  2. Alipour, Y. (2013). A guide for diagnosis and detection of quarantine pests. Ministry of Jihad-e-Agriculture, Plant Protection Organization.
  3. Chen, Y. F., Yin, Y. N., Zhang, X. M., & Guo, J. H. (2007). Curtobacterium flaccumfaciens pv. beticola, a new pathovar of pathogens in sugar beet. Plant Disease, 91, 677–684. doi: 10.1094/PDIS-91-6-0677.CrossRefGoogle Scholar
  4. Collins, M. D., & Jones, D. (1983). Reclassification of Corynebacterium flaccumfaciens, Corynebacterium betae, Corynebacterium oortii and Corynebacterium poinsettiae in the genus Curtobacterium, as Curtobacterium flaccumfaciens comb. nov. Journal of General Microbiology, 129, 3545–3548.Google Scholar
  5. EPPO. (2011). Curtobacterium flaccumfaciens pv. flaccumfaciens. Bulletin OEPP/EPPO, 41, 320–328. doi: 10.1111/j.1365-2338.2011.02496.x.CrossRefGoogle Scholar
  6. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Chichester: Wiley. 348 pp.CrossRefGoogle Scholar
  7. Gross, D. C., & Vidaver, A. K. (1979). Bacteriocins of phytopathogenic Corynebacterium species. Canadian Journal of Microbiology, 25, 367–374.CrossRefPubMedGoogle Scholar
  8. Guimaraes, P. M., Palmano, S., Smith, J. J., Grossi, M. F. S., & Saddler, G. S. (2001). Development of a PCR test for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens. Antonie van Leeuwenhoek Journal of Microbiology, 80, 1–10. doi: 10.1023/A:1012077425747.CrossRefGoogle Scholar
  9. Harveson, R. M., & Vidaver, A. K. (2007). First report of the natural occurrence of soybean bacterial wilt isolates pathogenic to dry beans in Nebraska. Plant Health Progress. doi: 10.1094/PHP-2007-0822-01-BR.Google Scholar
  10. Harveson, R. M., & Vidaver, A. K. (2008). A new color variant of the dry bean bacterial wilt pathogen (Curtobacterium flaccumfaciens pv. flaccumfaciens) found in western Nebraska. Plant Health Progress. doi: 10.1094/PHP-2008-0815-01-BR.Google Scholar
  11. Harveson, R.M., Schwartz, H.F., Urrea C.A., & Yonts C.D. (2015). Bacterial wilt of dry-edible beans in the central high plains of the U.S.: past, present, and future. Plant Disease, 99(12):1665–1677.Google Scholar
  12. Hedges, F. (1922). A bacterial wilt of the bean caused by Bacterium flaccumfaciens nov. sp. Science, 55, 433–434.CrossRefPubMedGoogle Scholar
  13. Hsieh, T. F., Huang, H. C., Mündel, H. H., & Erickson, R. S. (2003). A rapid indoor technique for screening common bean (Phaseolus vulgaris L.) for resistance to bacterial wilt [Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges) Collins and Jones]. Revista mexicana de fitopatología, 21, 370–374.Google Scholar
  14. Huang, H. C., Erickson, R. S., Yanke, L. J., Chelle, C. D., & Mündel, H. H. (2006). First report of the purple variant of Curtobacterium flaccumfaciens pv. flaccumfaciens, causal agent of bacterial wilt of bean, in Canada. Plant Disease, 90, 1262. doi: 10.1094/PD-90-1262A.CrossRefGoogle Scholar
  15. Huang, H. C., Erickson, R. S., Balasubramanian, P. M., Hsieh, T. F., & Conner, R. L. (2009). Resurgence of bacterial wilt of common bean in North America. Canadian Journal of Plant Pathology, 31, 290–300. doi: 10.1080/07060660909507600.CrossRefGoogle Scholar
  16. Jack, R. W., Tagg, J. R., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiological Reviews, 59, 171–200.PubMedPubMedCentralGoogle Scholar
  17. Jacobs, J. L., Carroll, T. L., & Sundin, G. W. (2005). The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microbial Ecology, 49, 104–113. doi: 10.1007/s00248-003-1061-4.CrossRefPubMedGoogle Scholar
  18. Jukes, T. H., & Cantor, C. (1969). Mammalian protein metabolism (pp. 21–132). New York: Academic.CrossRefGoogle Scholar
  19. Keyworth, W. G., Howell, J., & Dowson, W. J. (1956). Corynebacterium betae (sp. nov.) The causal organism of silvering disease of red beet. Plant Pathology, 5, 88–90.CrossRefGoogle Scholar
  20. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). ClustalW and ClustalX version 2. Bioinformatics, 23, 2947–2948. doi: 10.1093/bioinformatics/btm404.CrossRefPubMedGoogle Scholar
  21. Madden, L.V., Hughes, G., & van den Bosch, F. (2007). The study of plant disease epidemics. APS Press, St. Paul. University of Minnesota. 421pp.Google Scholar
  22. Mandel, M., Guba, E. F., & Litsky, W. (1961). The causal agent of bacterial blight of American holly. Bacteriological Proceedings, 61, 61.Google Scholar
  23. Maringoni, A. C., & Kurozawa, C. (2002). Curtobacterium flaccumfaciens pv. flaccumfaciens typification by bacteriocin. Pesquisa Agropecuária Brasileira, 37, 1339–1346. doi: 10.1590/S0100-204X2002000900019.CrossRefGoogle Scholar
  24. Osdaghi, E., & Lak, M. R. (2015). Occurrence of a new orange variant of Curtobacterium flaccumfaciens pv. flaccumfaciens, causing common bean wilt in Iran. Journal of Phytopathology, 163, 867–871. doi: 10.1111/jph.12322.CrossRefGoogle Scholar
  25. Osdaghi, E., Alizadeh, A., Shams-bakhsh, M., & Lak, M. R. (2009). Evaluation of common bean lines for their reaction to the common bacterial blight pathogen. Phytopathologia Mediterranea, 48, 461–468.Google Scholar
  26. Osdaghi, E., Pakdaman Sardrood, B., Bavi, M., Akbari Oghaz, N., Kimiaei, S., & Hadian, S. (2015a). First report of Curtobacterium flaccumfaciens pv. flaccumfaciens causing cowpea bacterial wilt in Iran. Journal of Phytopathology, 163, 653–656. doi: 10.1111/jph.12300.CrossRefGoogle Scholar
  27. Osdaghi, E., Taghavi, S. M., Fazliarab, A., Elahifard, E., & Lamichhane, J. R. (2015b). Characterization, geographic distribution and host range of Curtobacterium flaccumfaciens: An emerging bacterial pathogen in Iran. Crop Protection, 78, 185–192. doi: 10.1016/j.cropro.2015.09.015.CrossRefGoogle Scholar
  28. Pirone, P. P., & Bender, T. R. (1941). A new bacterial disease of poinsettiae. New Jersey Agriculture and Experimental Nursery Disease Notes, 14, 13–16.Google Scholar
  29. Richert, K., Brambilla, E., & Stackebrandt, E. (2005). Development of PCR primers specific for the amplification and direct sequencing of gyrB genes from microbacteria, order Actinomycetales. Journal of Microbiological Methods, 60, 115–123. doi: 10.1016/j.mimet.2004.09.004.CrossRefPubMedGoogle Scholar
  30. Richert, K., Brambilla, E., & Stackebrandt, E. (2007). The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16SrRNA genes. Systematic and Applied Microbiology, 30, 102–108. doi: 10.1016/j.syapm.2006.04.001.CrossRefPubMedGoogle Scholar
  31. Rohlf, F. J. (2008). NTSYSpc: numerical taxonomy system, ver. 2.20. Setauket: Exeter Publishing, Ltd.Google Scholar
  32. Saaltink, G. J., & Maas Geesteranus, P. H. (1969). A new disease of tulip caused by Corynebacterium oortii nov. sp. Netherlands Journal of Plant Pathology, 75, 123–128.CrossRefGoogle Scholar
  33. SAS. (1999). SAS software, Version 8 of the SAS System for windows. Cary: SAS Institute Inc.Google Scholar
  34. Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). St. Paul: APS. 379 pp.Google Scholar
  35. Schuster, M. L., & Christiansen, D. W. (1957). An orange-colored strain of Corynebacterium flaccumfaciens causing bean wilt. Phytopathology, 47, 51–53.Google Scholar
  36. Schuster, M. L., & Sayre, R. M. (1967). A coryneform bacterium induces purple-colored seed and leaf hypertrophy of Phaseolus vulgaris and other leguminosae. Phytopathology, 57, 1064–1066.Google Scholar
  37. Schuster, M. L., Vidaver, A. K., & Mandel, M. (1968). A purple pigment-producing bean wilt bacterium Corynebacterium flaccumfaciens var. violaceum n. var. Canadian Journal of Microbiology, 14, 423–427.CrossRefPubMedGoogle Scholar
  38. Smith, N. C., Hennessy, J., & Stead, D. E. (2001). Repetitive sequence-derived PCR profiling using the BOX-A1R primer for rapid identification of the plant pathogen Clavibacter michiganensis subspecies sepedonicus. European Journal of Plant Pathology, 107, 739–748. doi: 10.1023/A:1011955811847.CrossRefGoogle Scholar
  39. Soares, R. M., Fantinato, G. G. P., Darben, L. M., Marcelino-Guimarães, F. C., Seixas, C. D. S., & Carneiro, G. E. S. (2013). First report of Curtobacterium flaccumfaciens pv. flaccumfaciens on soybean in Brazil. Tropical Plant Pathology, 38, 452–454. doi: 10.1590/S1982-56762013000500012.CrossRefGoogle Scholar
  40. Souza, V. L., Maringoni, A. C., & Krause-Sakate, R. (2006). Genetic variability in Curtobacterium flaccumfaciens isolates. Summa Phytopathologica, 32, 170–176. doi: 10.1590/S0100-54052006000200012.Google Scholar
  41. Tagg, J. R., Dajani, A. S., & Wannamaker, L. W. (1976). Bacteriocins of gram-positive bacteria. Bacteriology Reviews, 40, 722–756.Google Scholar
  42. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. doi: 10.1093/molbev/mst197.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tegli, S., Sereni, A., & Surico, G. (2002). PCR-based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Letters in Applied Microbiology, 35, 331–337. doi: 10.1046/j.1472-765X.2002.01187.x.CrossRefPubMedGoogle Scholar
  44. Urrea, C. A., & Harveson, R. M. (2014). Identification of sources of bacterial wilt resistance in common beans (Phaseolus vulgaris L.). Plant Disease, 98, 973–976. doi: 10.1094/PDIS-04-13-0391-RE.CrossRefGoogle Scholar
  45. van Schoonhoven, V. A., & Pastor-Corrales, M. A. (1987). CIAT. Standard evaluation of bean germplasm. Cali: Centro Internacional de Agricultura Tropical (CIAT). 54 p.Google Scholar
  46. Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cell Biology, 5, 25–40.Google Scholar
  47. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.PubMedPubMedCentralGoogle Scholar
  48. Yim, K. O., Lee, H. I., Kim, J. H., Lee, S. D., Cho, J. H., & Cha, J. S. (2012). Characterization of phenotypic variants of Clavibacter michiganensis subsp. michiganensis isolated from Capsicum annuum. European Journal of Plant Pathology, 133, 559–575. doi: 10.1007/s10658-011-9927-7.CrossRefGoogle Scholar
  49. Young, J. M., Watson, D. R. W., & Dye, D. W. (2004). Reconsideration of Arthrobacter ilicis (Mandel et al. 1961) Collins et al. 1982 as a plant-pathogenic species. Proposal to emend the authority and description of the species. Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology, 54, 303–305. doi: 10.1099/ijs.0.02929-0.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Ebrahim Osdaghi
    • 1
  • S. Mohsen Taghavi
    • 1
  • Habiballah Hamzehzarghani
    • 1
  • Amal Fazliarab
    • 1
  • Robert M. Harveson
    • 2
  • Jay Ram Lamichhane
    • 3
  1. 1.Department of Plant Protection, College of AgricultureShiraz UniversityShirazIran
  2. 2.Panhandle Research & Extension CenterUniversity of NebraskaScottsbluffUSA
  3. 3.INRA, UAR 1240 Eco-InnovThiverval-GrignonFrance

Personalised recommendations