European Journal of Plant Pathology

, Volume 145, Issue 4, pp 829–845 | Cite as

Examination of an isolate of Potato leaf roll virus that does not induce visible symptoms in the greenhouse

  • Anja Hühnlein
  • Jörg Schubert
  • Volker Zahn
  • Thomas Thieme


Over the last 30 years the importance of Potato leaf roll virus (PLRV) in commercial potato and seed potato production has decreased considerably. Since PLRV is transmitted by aphids in a persistent manner it can be controlled by applying a systemic insecticide. However, the development of insecticide resistance in the main vectors of PLRV Myzus persicae, Aulacorthum solani, Rhopalosiphoninus latysiphon, Aphis fabae, A. nasturtii, A. frangulae and Macrosiphum euphorbiae, and the development of isolates of PLRV that do not induce visible symptoms in some potato cultivars may lead to a resurgence in the significance of PLRV. Isolates of this type were found repeatedly during growing-on tests in Lower Saxony, Germany. In this study we examined such a symptomless isolate. The visible symptoms induced by this isolate in different potato cultivars were compared with those induced by isolates causing typical symptoms of a PLRV infection. By using quantitative real-time PCR the quantifiable amount of viral RNA was determined. Under climate chamber conditions all the isolates tested induced similar symptoms and did not differ in viral RNA content. Complete sequences for the tested isolates were obtained and used in a phylogenetic analysis. All the PLRV isolates compared were very similar at the molecular level. Several motifs that could play a role in symptom expression were analyzed, but none of them were correlated with the absence of symptoms in potato plants during growing-on tests. The discrepancy between the observations recorded in the growing-on tests and our experiments are discussed.


PLRV Cultivars Growing-on test RT-qPCR UV-radiation 



This work was supported by a grant from the German Federal Ministry of Education and Research (03WKBN05A). We are indebted to Peter Steinbach and Volker Zahn for supplying the PLRV isolates JokerMV10 and SymlessLS10, respectively. We thank Edgar Schliephake for providing the Myzus persicae clone that was used to establish the stock culture used in this research. Thanks are also due to Volker Zahn, Stefan Krüssel, Gunter Aßmann, Martin Verbeek and Gé W. van den Bovenkamp of the plant protection services in Germany and the Netherlands for information on the occurence of M. persicae and PLRV infections in potato production areas in Europe. The authors greatly appreciate the technical assistence of Doreen Günzke and André Stumpe. We also thank Prof. A. F. G. Dixon for critical reading of the manuscript and especially for improving the English language.

Supplementary material

10658_2016_872_MOESM1_ESM.xlsx (12 kb)
ESM 1 (XLSX 11 kb)


  1. Anderson, J. M., Park, Y. I., & Soon, W. S. (1998). Unifying model for the photoinactivation of photosystem II in vivo under steady-state photosynthesis. Photosynthesis Research, 56(1), 1–13. doi: 10.1023/a:1005946808488.CrossRefGoogle Scholar
  2. Asada, K. (1994). Production and action of active oxygen species in photosynthetic tissues. In C. H. Foyer, & P. M. Mullineaux (Eds.), Causes of photooxidative stress and amelioration of defense systems in plants. (pp. 77–104).Google Scholar
  3. Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639. doi: 10.1146/annurev.arplant.50.1.601.CrossRefPubMedGoogle Scholar
  4. Balachandran, S., Osmond, C. B., & Makino, A. (1994). Effects of 2 strains of tobacco mosaic-virus on photosynthetic characteristics and nitrogen partitioning in leaves of nicotiana-tabacum Cv Xanthi during photoacclimation under 2 nitrogen nutrition regimes. Plant Physiology, 104(3), 1043–1050.PubMedPubMedCentralGoogle Scholar
  5. Balachandran, S., Hurry, V. M., Kelley, S. E., Osmond, C. B., Robinson, S. A., Rohozinski, J., et al. (1997). Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiologia Plantarum, 100(2), 203–213. doi: 10.1034/j.1399-3054.1997.1000201.x.CrossRefGoogle Scholar
  6. Banerjee, N., Wang, J. Y., & Zaitlin, M. (1995). A single nucleotide change in the coat protein gene of Tobacco mosaic virus is involved in the induction of severe chlorosis. Virology, 207(1), 234–239. doi: 10.1006/viro.1995.1070.CrossRefPubMedGoogle Scholar
  7. Barba, M., Cupidi, A., & Faggioli, F. (1989). In vitro culture of grapevine infected by closterovirus type III*. Journal of Phytopathology, 126(3), 225–230. doi: 10.1111/j.1439-0434.1989.tb01108.x.CrossRefGoogle Scholar
  8. Barker, H., & Woodford, J. A. T. (1987). Unusually mild symptoms of Potato leafroll virus in the progeny of late-infected mother plants. Potato Research, 30(2), 345–348.CrossRefGoogle Scholar
  9. Basky, Z. (2002). The relationship between aphid dynamics and two prominent potato viruses (PVY and PLRV) in seed potatoes in Hungary. Crop Protection, 21(9), 823–827. doi: 10.1016/s0261-2194(02)00045-5.CrossRefGoogle Scholar
  10. Bell, J. R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., et al. (2015). Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. Journal of Animal Ecology, 84(1 (Suppl. 4)), 21–34. doi: 10.1111/1365-2656.12282.CrossRefPubMedGoogle Scholar
  11. Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., & Ziegler-Graff, V. (2007). The polerovirus F box protein PO targets ARGONAUTE1 to suppress RNA silencing. Current Biology, 17(18), 1615–1621. doi: 10.1016/j.cub.2007.07.061.CrossRefPubMedGoogle Scholar
  12. Bradley, R. H. E. (1978). Search for leaf roll virus that does not cause diagnostic symptoms in potato foliage. Canadian Plant Disease Survey, 58(3), 56–60.Google Scholar
  13. Brault, V., Vandenheuvel, J. F. J. M., Verbeek, M., Zieglergraff, V., Reutenauer, A., Herrbach, E., et al. (1995). Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO Journal, 14(4), 650–659.PubMedPubMedCentralGoogle Scholar
  14. Christov, I., Stefanov, D., Velinov, T., Goltsev, V., Georgieva, K., Abracheva, P., et al. (2007). The symptomless leaf infection with grapevine leafroll associated virus 3 in grown in vitro plants as a simple model system for investigation of viral effects on photosynthesis. Journal of Plant Physiology, 164(9), 1124–1133. doi: 10.1016/j.jplph.2005.11.016.CrossRefPubMedGoogle Scholar
  15. Djilani-Khouadja, F., Rouzé-Jouan, J., Guyader, S., Marrakchi, M., & Fakhfakh, H. (2005). Biological and molecular characterization of Tunisian isolates of Potato leafroll virus. Journal of Plant Pathology, 87(2), 91–99.Google Scholar
  16. Domier, L. L., & D’Arcy, C. J. (2008). Luteoviruses. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Ecyclopedia of virology (3rd ed., Vol. 3, pp. 231–238). Amsterdam: Academic.CrossRefGoogle Scholar
  17. ECPD: The European Cultivated Potato Database (2015) Accessed 22nd June 2015.
  18. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. doi: 10.1093/nar/gkh340.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Federal Plant Variety Office of Germany (1977–2014). Descriptive Variety Lists - Potato. Hannover, Germany: Federal Plant Variety Office of Germany.Google Scholar
  20. Guyader, S., & Ducray, D. G. (2002). Sequence analysis of potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology, 83, 1799–1807.Google Scholar
  21. Hwang, Y. T., Kalischuk, M., Fusaro, A. F., Waterhouse, P. M., & Kawchuk, L. (2013). Small RNA sequencing of potato leafroll virus-infected plants reveals an additional subgenomic RNA encoding a sequence-specific RNA-binding protein. Virology, 438(2), 61–69. doi: 10.1016/j.virol.2012.12.012.CrossRefPubMedGoogle Scholar
  22. Ioannou, N. (1989). The infection pressure of potato leafroll virus and potato virus Y in relation to aphid populations in Cyprus. Potato Research, 32(1), 33–47. doi: 10.1007/bf02365815.CrossRefGoogle Scholar
  23. Jaag, H. M., Kawchuk, L., Rohde, W., Fischer, R., Emans, N., & Prüfer, D. (2003). An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8939–8944.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Juszczuk, M., Zagorski-Ostoja, W., & Hulanicka, D. M. (1997). Studies on the translation mechanism of subgenomic RNA of potato leafroll virus. Acta Biochimica Polonica, 44(1), 69–78.PubMedGoogle Scholar
  25. Juszczuk, M., Paczkowska, E., Sadowy, E., Zagorski, W., & Hulanicka, D. M. (2000). Effect of genomic and subgenomic leader sequences of potato leafroll virus on gene expression. FEBS Letters, 484(1), 33–36. doi: 10.1016/s0014-5793(00)02122-0.CrossRefPubMedGoogle Scholar
  26. Kamer, G., & Argos, P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research, 12(18), 7269–7282. doi: 10.1093/nar/12.18.7269.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Krüssel, S. Langjährige Beobachtungen zum Auftreten von relevanten Blattlausarten in Kartoffeln in Niedersachsen. In DPG-Arbeitskreis Integrierter Pflanzenschutz, Projektgruppe Kartoffel, Julius Kühn-Institut, Braunschweig, Germany, 2nd March 2011. Google Scholar
  28. Kumar, P., & Poehling, H. M. (2006). UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environmental Entomology, 35(4), 1069–1082. doi: 10.1603/0046-225x-35.4.1069.CrossRefGoogle Scholar
  29. Liu, Y., Zhai, H., Zhao, K., Wu, B. L., & Wang, X. F. (2012). Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae. Journal of General Virology, 93, 1825–1830. doi: 10.1099/vir.0.042135-0.CrossRefPubMedGoogle Scholar
  30. Loebenstein, G. (2001). Potato leafroll virus (PLRV; Genus Polerovirus; family Luteoviridae). In G. Loebenstein, P. H. Berger, A. A. Brunt, & R. H. Lawson (Eds.), Virus and virus-like diseases of potatoes and production of seed-potatoes (pp. 69–75). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  31. MacCarthy, H. R. (1963). Instability of symptoms of potato leaf roll virus. Phytopathology, 53(10), 1161–1163.Google Scholar
  32. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), 1–5.CrossRefGoogle Scholar
  33. Mayo, M. A., Robinson, D. J., Jolly, C. A., & Hyman, L. (1989). Nucleotide-sequence of potato leafroll luteovirus RNA. Journal of General Virology, 70, 1037–1051.CrossRefPubMedGoogle Scholar
  34. Miller, J. S., & Mayo, M. A. (1991). The location of the 5′ end of the potato leafroll luteovirus subgenomic coat protein mRNA. Journal of General Virology, 72(11), 2633–2638. doi: 10.1099/0022-1317-72-11-2633.CrossRefPubMedGoogle Scholar
  35. Mohan, B. R., Dinesh-Kumar, S. P., & Miller, W. A. (1995). Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology, 212(1), 186–195. doi: 10.1006/viro.1995.1467.CrossRefPubMedGoogle Scholar
  36. Mortimer-Jones, S. M., Jones, M. G. K., Jones, R. A. C., Thomson, G., & Dwyer, G. I. (2009). A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. Journal of Virological Methods, 161(2), 289–296. doi: 10.1016/j.jviromet.2009.06.027.CrossRefPubMedGoogle Scholar
  37. Osmond, C. B., Berry, J. A., Balachandran, S., Buchenosmond, C., Daley, P. F., & Hodgson, R. A. J. (1990). Potential consequences of virus infection for shade-sun acclimation in leaves. Botanica Acta, 103(3), 226–229.CrossRefGoogle Scholar
  38. Pazhouhandeh, M., Dieterle, M., Marrocco, K., Lechner, E., Berry, B., Brault, V., et al. (2006). F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proceedings of the National Academy of Sciences of the United States of America, 103(6), 1994–1999. doi: 10.1073/pnas.0510784103.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peters, D. (1967). Purification of potato leafroll virus from its vector myzus persicae. Virology, 31(1), 46–54.CrossRefPubMedGoogle Scholar
  40. Prüfer, D., Kawchuk, L., Monecke, M., Nowok, S., Fischer, R., & Rohde, W. (1999). Immunological analysis of potato leafroll luteovirus (PLRV) P1 expression identifies a 25 kDa RNA-binding protein derived via P1 processing. Nucleic Acids Research, 27(2), 421–425.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rahoutei, J., García-Luque, I., & Barón, M. (2000). Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiologia Plantarum, 110(2), 286–292. doi: 10.1034/j.1399-3054.2000.110220.x.CrossRefGoogle Scholar
  42. Reinero, A., & Beachy, R. N. (1989). Reduced photosystem II activity and accumulation of viral coat protein in chloroplasts of leaves infected with Tobacco mosaic virus. Plant Physiology, 89(1), 111–116. doi: 10.1104/pp.89.1.111.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Robert, Y. (1999). Epidemiology of potato leafroll disease. In H. G. Smith & H. Barker (Eds.), The Luteoviridae (pp. 221–228). Wallingford: CABI Publishing.Google Scholar
  44. Rohde, W., Gramstat, A., Schmitz, J., Tacke, E., & Prüfer, D. (1994). Plant viruses as model systems for the study of noncanonical translation mechanisms in higher plants. Journal of General Virology, 75, 2141–2149. doi: 10.1099/0022-1317-75-9-2141.CrossRefPubMedGoogle Scholar
  45. Rowhani, A., & Stacesmith, R. (1979). Purification and characterization of potato leafroll virus. Virology, 98(1), 45–54.CrossRefPubMedGoogle Scholar
  46. Schenk, G. (1991). Dynamik des Virusbefalls von Kartoffeln in Mecklenburg-Vorpommern, Sachsen-Anhalt, Brandenburg, Thüringen und Sachsen. Archives of Phytopathology and Plant Protection, 27(6), 425–437. doi: 10.1080/03235409109438085.CrossRefGoogle Scholar
  47. Smirnova, E., Firth, A. E., Miller, W. A., Scheidecker, D., Brault, V., Reinbold, C., et al. (2015). Discovery of a Small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathogens, 11(5), e1004868. doi: 10.1371/journal.ppat.1004868.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Solomon-Blackburn, R. M., & Barker, H. (2001). Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity, 86(Pt 1), 17–35.CrossRefPubMedGoogle Scholar
  49. Tacke, E., Prüfer, D., Salamini, F., & Rohde, W. (1990). Characterization of a potato leafroll luteovirus subgenomic RNA—differential expression by internal translation initiation and UAG suppression. Journal of General Virology, 71, 2265–2272. doi: 10.1099/0022-1317-71-10-2265.CrossRefPubMedGoogle Scholar
  50. Takahashi, H., & Ehara, Y. (1992). Changes in the activity and the polypeptide composition of the oxygen-evolving complex in photosystem II of tobacco leaves infected with Cucumber mosaic virus strain. Molecular Plant-Microbe Interactions, 5(3), 269–272. doi: 10.1094/mpmi-5-269.CrossRefPubMedGoogle Scholar
  51. Takahashi, S., Milward, S. E., Yamori, W., Evans, J. R., Hillier, W., & Badger, M. R. (2010). The solar action spectrum of photosystem II damage. Plant Physiology, 153(3), 988–993. doi: 10.1104/pp.110.155747.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Taliansky, M., Mayo, M. A., & Barker, H. (2003). Potato leafroll virus: a classic pathogen shows some new tricks. Molecular Plant Pathology, 4(2), 81–89.CrossRefPubMedGoogle Scholar
  53. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. doi: 10.1093/molbev/mst197.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tukey, J. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.CrossRefPubMedGoogle Scholar
  55. Ummad-ud-Din, U., Khan, M. A., Nazir, J., & Bushra, S. (2011). Evaluation of resistance against PLRV in potato cultivars. Pakistan Journal of Phytopathology, 23(1), 14–19.Google Scholar
  56. European Union. (2002). Council directive 2002/56/EC of 13 June 2002 on the marketing of seed potatoes. Official Journal of the European Communities, L 193(45), 60–73.Google Scholar
  57. Valkonen, J. P. (2007). Viruses: Economical losses and biotechnological potential. In D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. McKarren, & M. A. Taylor (Eds.), Potato biology and biotechnology—advances and perspectives (pp. 619–641). Amsterdam: Elsevier.Google Scholar
  58. van der Wilk, F., Houterman, P., Molthoff, J., Hans, F., Dekker, B., van den Heuvel, J., et al. (1997). Expression of the potato leafroll virus ORF0 induces viral-disease-like symptoms in transgenic potato plants. Molecular Plant-Microbe Interactions, 10(2), 153–159.CrossRefPubMedGoogle Scholar
  59. Wright, N. S., & MacCarthy, H. R. (1963). Expresson and detection of leaf roll virus strains in potato. American Potato Journal, 40, 154–162.CrossRefGoogle Scholar
  60. Wright, N. S., MacCarthy, H. R., & Cole, E. F. (1967). Detection and control of mild strains of potato leaf roll virus. [Article]. American Potato Journal, 44(7), 245–248. doi: 10.1007/bf02862520.CrossRefGoogle Scholar
  61. Young, M. J., Kelly, L., Larkin, P. J., Waterhouse, P. M., & Gerlach, W. L. (1991). Infectious in vitro transcripts from a cloned cDNA of barley yellow dwarf virus. Virology, 180(1), 372–379. doi: 10.1016/0042-6822(91)90042-A.CrossRefPubMedGoogle Scholar
  62. Zahn, V. (2004). Verändertes auftreten von viren. Kartoffelbau, 55(11), 394–397.Google Scholar
  63. Zahn, V. (2014). Ergebnisse der Kartoffelvirustestung in der Saison 2013/2014.
  64. Zarghani, S., Shams-Bakhsh, M., Zand, N., Sokhandan-Bashir, N., & Pazhouhandeh, M. (2012). Genetic analysis of Iranian population of potato leafroll virus based on ORF0. Virus Genes, 45(3), 567–574. doi: 10.1007/s11262-012-0804-z.CrossRefPubMedGoogle Scholar
  65. Zhuo, T., Li, Y.-Y., Xiang, H.-Y., Wu, Z.-Y., Wang, X.-B., Wang, Y., et al. (2014). Amino acid sequence motifs essential for P0-mediated suppression of rna silencing in an isolate of potato leafroll virus from inner mongolia. Molecular Plant-Microbe Interactions, 27(6), 515–527. doi: 10.1094/mpmi-08-13-0231-r.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Anja Hühnlein
    • 1
  • Jörg Schubert
    • 2
  • Volker Zahn
    • 3
  • Thomas Thieme
    • 4
  1. 1.Julius Kühn-InstitutInformation Centre and LibraryQuedlinburgGermany
  2. 2.Julius Kühn-InstitutInstitute for Biosafety in Plant BiotechnologyQuedlinburgGermany
  3. 3.Plant Protection Office, Chamber of Agriculture of Lower SaxonyHannoverGermany
  4. 4.BTL Bio-Test Labor GmbH SagerheideLüsewitzGermany

Personalised recommendations