Skip to main content
Log in

Examination of an isolate of Potato leaf roll virus that does not induce visible symptoms in the greenhouse

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Over the last 30 years the importance of Potato leaf roll virus (PLRV) in commercial potato and seed potato production has decreased considerably. Since PLRV is transmitted by aphids in a persistent manner it can be controlled by applying a systemic insecticide. However, the development of insecticide resistance in the main vectors of PLRV Myzus persicae, Aulacorthum solani, Rhopalosiphoninus latysiphon, Aphis fabae, A. nasturtii, A. frangulae and Macrosiphum euphorbiae, and the development of isolates of PLRV that do not induce visible symptoms in some potato cultivars may lead to a resurgence in the significance of PLRV. Isolates of this type were found repeatedly during growing-on tests in Lower Saxony, Germany. In this study we examined such a symptomless isolate. The visible symptoms induced by this isolate in different potato cultivars were compared with those induced by isolates causing typical symptoms of a PLRV infection. By using quantitative real-time PCR the quantifiable amount of viral RNA was determined. Under climate chamber conditions all the isolates tested induced similar symptoms and did not differ in viral RNA content. Complete sequences for the tested isolates were obtained and used in a phylogenetic analysis. All the PLRV isolates compared were very similar at the molecular level. Several motifs that could play a role in symptom expression were analyzed, but none of them were correlated with the absence of symptoms in potato plants during growing-on tests. The discrepancy between the observations recorded in the growing-on tests and our experiments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, J. M., Park, Y. I., & Soon, W. S. (1998). Unifying model for the photoinactivation of photosystem II in vivo under steady-state photosynthesis. Photosynthesis Research, 56(1), 1–13. doi:10.1023/a:1005946808488.

    Article  CAS  Google Scholar 

  • Asada, K. (1994). Production and action of active oxygen species in photosynthetic tissues. In C. H. Foyer, & P. M. Mullineaux (Eds.), Causes of photooxidative stress and amelioration of defense systems in plants. (pp. 77–104).

  • Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639. doi:10.1146/annurev.arplant.50.1.601.

    Article  CAS  PubMed  Google Scholar 

  • Balachandran, S., Osmond, C. B., & Makino, A. (1994). Effects of 2 strains of tobacco mosaic-virus on photosynthetic characteristics and nitrogen partitioning in leaves of nicotiana-tabacum Cv Xanthi during photoacclimation under 2 nitrogen nutrition regimes. Plant Physiology, 104(3), 1043–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balachandran, S., Hurry, V. M., Kelley, S. E., Osmond, C. B., Robinson, S. A., Rohozinski, J., et al. (1997). Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiologia Plantarum, 100(2), 203–213. doi:10.1034/j.1399-3054.1997.1000201.x.

    Article  CAS  Google Scholar 

  • Banerjee, N., Wang, J. Y., & Zaitlin, M. (1995). A single nucleotide change in the coat protein gene of Tobacco mosaic virus is involved in the induction of severe chlorosis. Virology, 207(1), 234–239. doi:10.1006/viro.1995.1070.

    Article  CAS  PubMed  Google Scholar 

  • Barba, M., Cupidi, A., & Faggioli, F. (1989). In vitro culture of grapevine infected by closterovirus type III*. Journal of Phytopathology, 126(3), 225–230. doi:10.1111/j.1439-0434.1989.tb01108.x.

    Article  Google Scholar 

  • Barker, H., & Woodford, J. A. T. (1987). Unusually mild symptoms of Potato leafroll virus in the progeny of late-infected mother plants. Potato Research, 30(2), 345–348.

    Article  Google Scholar 

  • Basky, Z. (2002). The relationship between aphid dynamics and two prominent potato viruses (PVY and PLRV) in seed potatoes in Hungary. Crop Protection, 21(9), 823–827. doi:10.1016/s0261-2194(02)00045-5.

    Article  Google Scholar 

  • Bell, J. R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., et al. (2015). Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. Journal of Animal Ecology, 84(1 (Suppl. 4)), 21–34. doi:10.1111/1365-2656.12282.

    Article  PubMed  Google Scholar 

  • Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., & Ziegler-Graff, V. (2007). The polerovirus F box protein PO targets ARGONAUTE1 to suppress RNA silencing. Current Biology, 17(18), 1615–1621. doi:10.1016/j.cub.2007.07.061.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, R. H. E. (1978). Search for leaf roll virus that does not cause diagnostic symptoms in potato foliage. Canadian Plant Disease Survey, 58(3), 56–60.

    Google Scholar 

  • Brault, V., Vandenheuvel, J. F. J. M., Verbeek, M., Zieglergraff, V., Reutenauer, A., Herrbach, E., et al. (1995). Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO Journal, 14(4), 650–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christov, I., Stefanov, D., Velinov, T., Goltsev, V., Georgieva, K., Abracheva, P., et al. (2007). The symptomless leaf infection with grapevine leafroll associated virus 3 in grown in vitro plants as a simple model system for investigation of viral effects on photosynthesis. Journal of Plant Physiology, 164(9), 1124–1133. doi:10.1016/j.jplph.2005.11.016.

    Article  CAS  PubMed  Google Scholar 

  • Djilani-Khouadja, F., Rouzé-Jouan, J., Guyader, S., Marrakchi, M., & Fakhfakh, H. (2005). Biological and molecular characterization of Tunisian isolates of Potato leafroll virus. Journal of Plant Pathology, 87(2), 91–99.

    Google Scholar 

  • Domier, L. L., & D’Arcy, C. J. (2008). Luteoviruses. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Ecyclopedia of virology (3rd ed., Vol. 3, pp. 231–238). Amsterdam: Academic.

    Chapter  Google Scholar 

  • ECPD: The European Cultivated Potato Database (2015) http://www.europotato.org. Accessed 22nd June 2015.

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. doi:10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federal Plant Variety Office of Germany (1977–2014). Descriptive Variety Lists - Potato. Hannover, Germany: Federal Plant Variety Office of Germany.

  • Guyader, S., & Ducray, D. G. (2002). Sequence analysis of potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology, 83, 1799–1807.

  • Hwang, Y. T., Kalischuk, M., Fusaro, A. F., Waterhouse, P. M., & Kawchuk, L. (2013). Small RNA sequencing of potato leafroll virus-infected plants reveals an additional subgenomic RNA encoding a sequence-specific RNA-binding protein. Virology, 438(2), 61–69. doi:10.1016/j.virol.2012.12.012.

    Article  CAS  PubMed  Google Scholar 

  • Ioannou, N. (1989). The infection pressure of potato leafroll virus and potato virus Y in relation to aphid populations in Cyprus. Potato Research, 32(1), 33–47. doi:10.1007/bf02365815.

    Article  Google Scholar 

  • Jaag, H. M., Kawchuk, L., Rohde, W., Fischer, R., Emans, N., & Prüfer, D. (2003). An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8939–8944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juszczuk, M., Zagorski-Ostoja, W., & Hulanicka, D. M. (1997). Studies on the translation mechanism of subgenomic RNA of potato leafroll virus. Acta Biochimica Polonica, 44(1), 69–78.

    CAS  PubMed  Google Scholar 

  • Juszczuk, M., Paczkowska, E., Sadowy, E., Zagorski, W., & Hulanicka, D. M. (2000). Effect of genomic and subgenomic leader sequences of potato leafroll virus on gene expression. FEBS Letters, 484(1), 33–36. doi:10.1016/s0014-5793(00)02122-0.

    Article  CAS  PubMed  Google Scholar 

  • Kamer, G., & Argos, P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research, 12(18), 7269–7282. doi:10.1093/nar/12.18.7269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüssel, S. Langjährige Beobachtungen zum Auftreten von relevanten Blattlausarten in Kartoffeln in Niedersachsen. In DPG-Arbeitskreis Integrierter Pflanzenschutz, Projektgruppe Kartoffel, Julius Kühn-Institut, Braunschweig, Germany, 2nd March 2011.

  • Kumar, P., & Poehling, H. M. (2006). UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environmental Entomology, 35(4), 1069–1082. doi:10.1603/0046-225x-35.4.1069.

    Article  Google Scholar 

  • Liu, Y., Zhai, H., Zhao, K., Wu, B. L., & Wang, X. F. (2012). Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae. Journal of General Virology, 93, 1825–1830. doi:10.1099/vir.0.042135-0.

    Article  CAS  PubMed  Google Scholar 

  • Loebenstein, G. (2001). Potato leafroll virus (PLRV; Genus Polerovirus; family Luteoviridae). In G. Loebenstein, P. H. Berger, A. A. Brunt, & R. H. Lawson (Eds.), Virus and virus-like diseases of potatoes and production of seed-potatoes (pp. 69–75). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • MacCarthy, H. R. (1963). Instability of symptoms of potato leaf roll virus. Phytopathology, 53(10), 1161–1163.

    Google Scholar 

  • Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), 1–5.

    Article  Google Scholar 

  • Mayo, M. A., Robinson, D. J., Jolly, C. A., & Hyman, L. (1989). Nucleotide-sequence of potato leafroll luteovirus RNA. Journal of General Virology, 70, 1037–1051.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. S., & Mayo, M. A. (1991). The location of the 5′ end of the potato leafroll luteovirus subgenomic coat protein mRNA. Journal of General Virology, 72(11), 2633–2638. doi:10.1099/0022-1317-72-11-2633.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, B. R., Dinesh-Kumar, S. P., & Miller, W. A. (1995). Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology, 212(1), 186–195. doi:10.1006/viro.1995.1467.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer-Jones, S. M., Jones, M. G. K., Jones, R. A. C., Thomson, G., & Dwyer, G. I. (2009). A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. Journal of Virological Methods, 161(2), 289–296. doi:10.1016/j.jviromet.2009.06.027.

    Article  CAS  PubMed  Google Scholar 

  • Osmond, C. B., Berry, J. A., Balachandran, S., Buchenosmond, C., Daley, P. F., & Hodgson, R. A. J. (1990). Potential consequences of virus infection for shade-sun acclimation in leaves. Botanica Acta, 103(3), 226–229.

    Article  Google Scholar 

  • Pazhouhandeh, M., Dieterle, M., Marrocco, K., Lechner, E., Berry, B., Brault, V., et al. (2006). F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proceedings of the National Academy of Sciences of the United States of America, 103(6), 1994–1999. doi:10.1073/pnas.0510784103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, D. (1967). Purification of potato leafroll virus from its vector myzus persicae. Virology, 31(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Prüfer, D., Kawchuk, L., Monecke, M., Nowok, S., Fischer, R., & Rohde, W. (1999). Immunological analysis of potato leafroll luteovirus (PLRV) P1 expression identifies a 25 kDa RNA-binding protein derived via P1 processing. Nucleic Acids Research, 27(2), 421–425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahoutei, J., García-Luque, I., & Barón, M. (2000). Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiologia Plantarum, 110(2), 286–292. doi:10.1034/j.1399-3054.2000.110220.x.

    Article  CAS  Google Scholar 

  • Reinero, A., & Beachy, R. N. (1989). Reduced photosystem II activity and accumulation of viral coat protein in chloroplasts of leaves infected with Tobacco mosaic virus. Plant Physiology, 89(1), 111–116. doi:10.1104/pp.89.1.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert, Y. (1999). Epidemiology of potato leafroll disease. In H. G. Smith & H. Barker (Eds.), The Luteoviridae (pp. 221–228). Wallingford: CABI Publishing.

    Google Scholar 

  • Rohde, W., Gramstat, A., Schmitz, J., Tacke, E., & Prüfer, D. (1994). Plant viruses as model systems for the study of noncanonical translation mechanisms in higher plants. Journal of General Virology, 75, 2141–2149. doi:10.1099/0022-1317-75-9-2141.

    Article  CAS  PubMed  Google Scholar 

  • Rowhani, A., & Stacesmith, R. (1979). Purification and characterization of potato leafroll virus. Virology, 98(1), 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Schenk, G. (1991). Dynamik des Virusbefalls von Kartoffeln in Mecklenburg-Vorpommern, Sachsen-Anhalt, Brandenburg, Thüringen und Sachsen. Archives of Phytopathology and Plant Protection, 27(6), 425–437. doi:10.1080/03235409109438085.

    Article  Google Scholar 

  • Smirnova, E., Firth, A. E., Miller, W. A., Scheidecker, D., Brault, V., Reinbold, C., et al. (2015). Discovery of a Small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathogens, 11(5), e1004868. doi:10.1371/journal.ppat.1004868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon-Blackburn, R. M., & Barker, H. (2001). Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity, 86(Pt 1), 17–35.

    Article  CAS  PubMed  Google Scholar 

  • Tacke, E., Prüfer, D., Salamini, F., & Rohde, W. (1990). Characterization of a potato leafroll luteovirus subgenomic RNA—differential expression by internal translation initiation and UAG suppression. Journal of General Virology, 71, 2265–2272. doi:10.1099/0022-1317-71-10-2265.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., & Ehara, Y. (1992). Changes in the activity and the polypeptide composition of the oxygen-evolving complex in photosystem II of tobacco leaves infected with Cucumber mosaic virus strain. Molecular Plant-Microbe Interactions, 5(3), 269–272. doi:10.1094/mpmi-5-269.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, S., Milward, S. E., Yamori, W., Evans, J. R., Hillier, W., & Badger, M. R. (2010). The solar action spectrum of photosystem II damage. Plant Physiology, 153(3), 988–993. doi:10.1104/pp.110.155747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taliansky, M., Mayo, M. A., & Barker, H. (2003). Potato leafroll virus: a classic pathogen shows some new tricks. Molecular Plant Pathology, 4(2), 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. doi:10.1093/molbev/mst197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tukey, J. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.

    Article  CAS  PubMed  Google Scholar 

  • Ummad-ud-Din, U., Khan, M. A., Nazir, J., & Bushra, S. (2011). Evaluation of resistance against PLRV in potato cultivars. Pakistan Journal of Phytopathology, 23(1), 14–19.

    Google Scholar 

  • European Union. (2002). Council directive 2002/56/EC of 13 June 2002 on the marketing of seed potatoes. Official Journal of the European Communities, L 193(45), 60–73.

    Google Scholar 

  • Valkonen, J. P. (2007). Viruses: Economical losses and biotechnological potential. In D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. McKarren, & M. A. Taylor (Eds.), Potato biology and biotechnology—advances and perspectives (pp. 619–641). Amsterdam: Elsevier.

  • van der Wilk, F., Houterman, P., Molthoff, J., Hans, F., Dekker, B., van den Heuvel, J., et al. (1997). Expression of the potato leafroll virus ORF0 induces viral-disease-like symptoms in transgenic potato plants. Molecular Plant-Microbe Interactions, 10(2), 153–159.

    Article  PubMed  Google Scholar 

  • Wright, N. S., & MacCarthy, H. R. (1963). Expresson and detection of leaf roll virus strains in potato. American Potato Journal, 40, 154–162.

    Article  Google Scholar 

  • Wright, N. S., MacCarthy, H. R., & Cole, E. F. (1967). Detection and control of mild strains of potato leaf roll virus. [Article]. American Potato Journal, 44(7), 245–248. doi:10.1007/bf02862520.

    Article  Google Scholar 

  • Young, M. J., Kelly, L., Larkin, P. J., Waterhouse, P. M., & Gerlach, W. L. (1991). Infectious in vitro transcripts from a cloned cDNA of barley yellow dwarf virus. Virology, 180(1), 372–379. doi:10.1016/0042-6822(91)90042-A.

    Article  CAS  PubMed  Google Scholar 

  • Zahn, V. (2004). Verändertes auftreten von viren. Kartoffelbau, 55(11), 394–397.

    Google Scholar 

  • Zahn, V. (2014). Ergebnisse der Kartoffelvirustestung in der Saison 2013/2014. https://www.lwk-niedersachsen.de/index.cfm/portal/pflanze/nav/505/article/24333.html.

  • Zarghani, S., Shams-Bakhsh, M., Zand, N., Sokhandan-Bashir, N., & Pazhouhandeh, M. (2012). Genetic analysis of Iranian population of potato leafroll virus based on ORF0. Virus Genes, 45(3), 567–574. doi:10.1007/s11262-012-0804-z.

    Article  CAS  PubMed  Google Scholar 

  • Zhuo, T., Li, Y.-Y., Xiang, H.-Y., Wu, Z.-Y., Wang, X.-B., Wang, Y., et al. (2014). Amino acid sequence motifs essential for P0-mediated suppression of rna silencing in an isolate of potato leafroll virus from inner mongolia. Molecular Plant-Microbe Interactions, 27(6), 515–527. doi:10.1094/mpmi-08-13-0231-r.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the German Federal Ministry of Education and Research (03WKBN05A). We are indebted to Peter Steinbach and Volker Zahn for supplying the PLRV isolates JokerMV10 and SymlessLS10, respectively. We thank Edgar Schliephake for providing the Myzus persicae clone that was used to establish the stock culture used in this research. Thanks are also due to Volker Zahn, Stefan Krüssel, Gunter Aßmann, Martin Verbeek and Gé W. van den Bovenkamp of the plant protection services in Germany and the Netherlands for information on the occurence of M. persicae and PLRV infections in potato production areas in Europe. The authors greatly appreciate the technical assistence of Doreen Günzke and André Stumpe. We also thank Prof. A. F. G. Dixon for critical reading of the manuscript and especially for improving the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Hühnlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hühnlein, A., Schubert, J., Zahn, V. et al. Examination of an isolate of Potato leaf roll virus that does not induce visible symptoms in the greenhouse. Eur J Plant Pathol 145, 829–845 (2016). https://doi.org/10.1007/s10658-016-0872-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0872-3

Keywords

Navigation