European Journal of Plant Pathology

, Volume 145, Issue 2, pp 345–361 | Cite as

Effects of plant morphological traits on phoma black stem in sunflower

  • André Aguiar Schwanck
  • Serge Savary
  • Philippe Debaeke
  • Patrick Vincourt
  • Laetitia Willocquet


Despite the importance of Phoma black stem of sunflower in France, no specific management tools are currently deployed to control this disease. The deployment of host plant resistance could be a cost-effective and sustainable way to manage the disease. Relationships between plant morphological traits and disease intensity may provide guidance towards the identification of sunflower morphological ideotypes associated with reduced disease intensity and therefore partial resistance. Such relationships were quantified in field experiments conducted over 2 years with a set of 21 sunflower genotypes, where several morphological attributes and several disease intensity variables were measured. Plant morphology was assessed prior to epidemic onset. Disease intensity was assessed at different scales of crop and plant hierarchy, using a nested sampling design, and implementing the concept of conditional disease intensity. The various analyses performed indicated that experimental plots grouped according to morphological attributes of sunflower at the flowering stage were associated with experimental plots grouped according to disease intensity variables, therefore indicating an association between morphological traits and disease intensity. Low disease intensity was associated with a morphological ideotype with large number of green leaves and tall stature. A sunflower plant morphological ideotype with more leaves and taller stature may represent an operational target in sunflower breeding when considering resistance to Phoma black stem.


Helianthus annuus Leptosphaeria lindquistii Phoma macdonaldii Plant morphology Sunflower Botanical epidemiology 



We thank LIPM (INRA-Toulouse), and particularly Marie-Claude Boniface, for contributing to the selection of sunflower genotypes, and for producing the seeds of experimental hybrids. This work was partly funded by the Brazilian National Council for Scientific and Technological Development (CNPq, Programa Ciência sem Fronteiras). Weather data was accessed at the CLIMATIK website of the AGROCLIM INRA group.


  1. Ando, K., Grumet, R., Terpstra, K., & Kelly, J. D. (2007). Manipulation of plant architecture to enhance crop disease control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2(8).Google Scholar
  2. Andrivon, D., Giorgetti, C., Baranger, A., Calonnec, A., Cartolaro, P., Faivre, R., Guyader, S., Lauri, P. E., Lescourret, F., Parisi, L., Ney, B., Tivoli, B., & Sache, I. (2013). Defining and designing plant architectural ideotypes to control epidemics? European Journal of Plant Pathology, 135, 611–617.CrossRefGoogle Scholar
  3. Beligan, S. G., Willocquet, L., & Savary, S. (2013). A strategy to identify sources of quantitative resistance in pathosystems involving disease escape and physiological resistance: the case study of rice sheath blight. Plant Pathology, 62, 888–899.CrossRefGoogle Scholar
  4. Benzécri, J. P. (1973). L’Analyse des Données. Tome 2. L’Analyse des Correspondances. Dunod, Paris 632p.Google Scholar
  5. Bert, P. F., Dechamp-Guillaume, G., Serre, F., Jouan, I., de Labrouhe, D. T., Nicolas, P., & Vear, F. (2004). Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 109(4), 865–874.CrossRefPubMedGoogle Scholar
  6. Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107.CrossRefGoogle Scholar
  7. Bordat, A., Debaeke, P., Dechamp-Guillaume, G., Mestries, E., Seassau, C., & Vincourt, P. (2011). Phoma et dessèchement précoce du tournesol. Toulouse: CETIOM.Google Scholar
  8. Bordat, A., Mestries, E., Dechamp-Guillaume, G., Bros, V., Descorps, C., Marchal, L., Perez, R., Vincourt P. (2012). Genetic variability and QTL for sunflower tolerance to premature ripening caused by Phoma macdonaldii. Proceedings of the 18th International Sunflower Conference, Mar Del Plata (Argentina).Google Scholar
  9. Debaeke, P., & Pérès, A. (2003). Influence of sunflower (Helianthus annuus L.) crop management on phoma black stem (Phoma macdonaldii Boerema). Crop Protection, 22(5), 741–752.CrossRefGoogle Scholar
  10. Délos, M., Moinard, J., & Mülhberger, E. (1998). Mise au point d’une méthode d’évaluation des risques de contaminations de Leptosphaeria lindquistii Frezzi, champignon parasite du tournesol (pp. 429–436). Tours: ANPP-Cinquième Conférence Internationale sur les Maladies des Plantes.Google Scholar
  11. Donald, C. M. T. (1968). The breeding of crop ideotypes. Euphytica, 17(3), 385–403.CrossRefGoogle Scholar
  12. Donald, P. A., Venette, J. R., & Gulya, T. J. (1987). Relationship between Phoma macdonaldii and premature death of sunflower in North Dakota. Plant Disease, 71, 466–468.CrossRefGoogle Scholar
  13. Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London: Academic.Google Scholar
  14. Gulya, T. J., Rashid, K. Y., & Masirevic, S. M. (1997). Sunflower diseases. In A. A. Schneiter (Ed.), Sunflower technology and production (Agronomy monograph No, Vol. 35, pp. 263–380).Google Scholar
  15. Harrell, F. E., Jr. (2001). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer.CrossRefGoogle Scholar
  16. Hedden, P. (2003). The genes of the green revolution. Trends in Genetics, 19(1), 5–9.CrossRefPubMedGoogle Scholar
  17. James, W. C. J. (1971). A manual of assessment keys for plant diseases. St Paul: APS Press.Google Scholar
  18. Large, E. C. (1966). Measuring plant disease. Annual Review of Phytopathology, 4(1), 9–26.CrossRefGoogle Scholar
  19. McRoberts, N., Hughes, G., & Madden, L. V. (2003). The theoretical basis and practical application of relationships between different disease intensity measurements in plants. Annals of Applied Biology, 142, 191–211.CrossRefGoogle Scholar
  20. Merrien, A., & Milan, M. J. (1992). Physiologie du tournesol. Paris: CETIOM.Google Scholar
  21. Nutter, F. W., Jr., Teng, P. S., & Shokes, F. M. (1991). Disease assessment terms and concepts. Plant Disease, 75, 1187–1188.Google Scholar
  22. Poland, J. A., & Nelson, R. J. (2011). In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopathology, 101(2), 290–298.CrossRefPubMedGoogle Scholar
  23. Poland, J. A., Balint-Kurti, P. J., Wisser, R. J., Pratt, R. C., & Nelson, R. J. (2009). Shades of gray: the world of quantitative disease resistance. Trends in Plant Science, 14(1), 21–29.CrossRefPubMedGoogle Scholar
  24. Pouzet, A., & Bugat, F. (1985). Description d’une méthode simple et rapide pour l’estimation de la surface foliaire par plante chez le tournesol. Proceedings of the 11th International Sunflower Conference. ISA, Mar del Plata, Argentina, 10–13 March 1985, pp.21–26.Google Scholar
  25. Roustaee, A., Barrault, G., Dechamp‐Guillaume, G., Lesigne, P., & Sarrafi, A. (2000). Inheritance of partial resistance to black stem (Phoma macdonaldii) in sunflower. Plant Pathology, 49(3), 396–401.CrossRefGoogle Scholar
  26. Saporta, G. (1990). Probabilités analyse des données et statistique. Paris: Editions Tevhnip.Google Scholar
  27. Savary, S., Castilla, N. P., Elazegui, F. A., McLaren, C. G., Ynalvez, M. A., & Teng, P. S. (1995a). Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology, 85, 959–965.CrossRefGoogle Scholar
  28. Savary, S., Madden, L. V., Zadoks, J. C., & Klein-Gebbinck, H. W. (1995b). Use of categorical in formation and correspondence analysis in plant disease epidemiology. Advances in Botanical Research, 21, 213–240.CrossRefGoogle Scholar
  29. Schlösser, I., Kranz, J., & Bonman, J. M. (2000). Characterization of plant type and epidemiological development in the pathosystem upland rice/rice blast (Pyricularia grisea) by means of multivariate statistical methods. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 107(1), 12–32.Google Scholar
  30. Schneiter, A. A., & Miller, J. F. (1981). Description of sunflower growth stages. Crop Science, 21, 901–903.CrossRefGoogle Scholar
  31. Schwanck, A. A., & Del Ponte, E. M. (2014). Accuracy and reliability of severity estimates using linear or logarithmic disease diagram sets in true colour or black and white: a study case for rice brown spot. Journal of Phytopathology, 162(10), 670–682.CrossRefGoogle Scholar
  32. Scott, P. R., Benedikz, P. W., Zones, H. G., & Ford, M. A. (1985). Some effects of canopy structure and microclimate on infection of tall and short wheats by Septoria nodorum. Plant Pathology, 34(4), 578–593.CrossRefGoogle Scholar
  33. Seassau, C., Debaeke, P., Mestries, E., & Dechamp-Guillaume, G. (2010). Evaluation of inoculation methods to reproduce sunflower premature ripening caused by Phoma macdonaldii. Plant Disease, 94(12), 1398–1404.CrossRefGoogle Scholar
  34. Shaw, M. W. (1995). Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proceedings of the Royal Society of London, Series B: Biological Sciences, 259(1356), 243–248.CrossRefGoogle Scholar
  35. Shaw, M. W. (1996). Simulating dispersal of fungal spores by wind, and the resulting patterns. Aspects of Applied Biology, 46, 165–172.Google Scholar
  36. Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods. Ames: Iowa State University Press.Google Scholar
  37. Srinivasachary, Beligan, G., Willocquet, L., & Savary, S. (2013). A strategy to identify 587 sources of quantitative resistance in pathosystems involving disease escape and 588 physiological resistance: the case study of rice sheath blight. Plant Pathology, 62, 888-899.Google Scholar
  38. Steinberg, D., & Colla, P. (2009). Logistic regression. In SYSTAT 13 statistics III (pp. 1–102). San Jose: SYSTAT Software Inc.Google Scholar
  39. Wilkinson, L., Engelman, L., Corter, J., & Coward, M. (2007). Cluster analysis. In SYSTAT 13 statistics I (pp. 65–124). San Jose: SYSTAT Software Inc.Google Scholar
  40. Willocquet, L., Noel, M., Sackville Hamilton, R., & Savary, S. (2012). Susceptibility of rice to sheath blight: an assessment of the diversity of rice germplasm according to genetic groups and morphological traits. Euphytica, 183, 227–41.CrossRefGoogle Scholar
  41. Xie, W., Yu, K., Pauls, K. P., & Navabi, A. (2012). Application of image analysis in studies of quantitative disease resistance, exemplified using common bacterial blight-common bean pathosystem. Phytopathology, 102(4), 434–442.CrossRefPubMedGoogle Scholar
  42. Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management. New York: Oxford University Press.Google Scholar
  43. Zhu, H., Gilchrist, L., Hayes, P., Kleinhofs, A., Kudrna, D., Liu, Z., Prom, L., Steffenson, B., Toojinda, T., & Vivar, H. (1999). Does function follow form? principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theoretical and Applied Genetics, 99, 1221–1232.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • André Aguiar Schwanck
    • 1
    • 2
  • Serge Savary
    • 1
    • 2
  • Philippe Debaeke
    • 1
    • 2
  • Patrick Vincourt
    • 3
    • 4
  • Laetitia Willocquet
    • 1
    • 2
  1. 1.INRA, UMR1248 AGIRCastanet-Tolosan cedexFrance
  2. 2.Université Toulouse, INPT, UMR AGIRToulouseFrance
  3. 3.INRA, LIPM, UMR441Castanet TolosanFrance
  4. 4.CNRS, LIPM, UMR2594Castanet TolosanFrance

Personalised recommendations