Advertisement

European Journal of Plant Pathology

, Volume 145, Issue 1, pp 81–87 | Cite as

Molecular identification and pathogenicity assessment of a rust fungus infecting common ragweed (Ambrosia artemisiifolia) in its native North American range

  • Edit Kassai-Jáger
  • Marion K. Seier
  • Harry C. Evans
  • Levente Kiss
Article

Abstract

A rust fungus collected from common ragweed (Ambrosia artemisiifolia) in Texas, USA, was identified as belonging to the Puccinia xanthii morphospecies based on its nrDNA ITS sequence. Pathogenicity studies carried out with this rust accession under quarantine conditions in the UK showed that the fungus was highly virulent on A. artemisiifolia plants from Australia. Recently, P. xanthii has been proposed as a potential classical biological control agent (CBCA) for common ragweed in its invasive range, focusing on Europe, despite previous doubts about its biocontrol potential. The results of the pathogenicity tests reported here support the suitability of this pathogen as a CBCA for common ragweed.

Keywords

Allergenic weed Classical biological control Fungal species concept Pucciniaceae Pucciniomycetes Invasive alien species 

Notes

Acknowledgments

We thank W. A. (Bill) Palmer (Queensland Department of Lands) for sending herbarium material of the North American rust. We acknowledge the support of the EU COST Action FA1203 ‘Sustainable management of Ambrosia artemisiifolia in Europe (SMARTER)’.

References

  1. Alaei, H., De Backer, M., Nuytinck, J., Maes, M., Höfte, M., & Heungens, K. (2009). Phylogenetic relationships of puccinia horiana and other rust pathogens of chrysanthemum × morifolium based on rDNA ITS sequence analysis. Mycological Research, 113, 668–683.CrossRefPubMedGoogle Scholar
  2. Alcorn, J. L. (1976). Host range of puccinia xanthii. Transactions of the British Mycological Society, 66, 365–367.CrossRefGoogle Scholar
  3. Batra, S. W. T. (1981). Puccinia xanthii forma specialis ambrosia-trifidae. Mycopathologia, 73, 61–64.CrossRefGoogle Scholar
  4. Chauvel, B., Dessaint, F., Cardinal-Legrand, C., & Bretagnolle, F. (2006). The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. Journal of Biogeography, 33, 665–673.CrossRefGoogle Scholar
  5. Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16, 10881–10890.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Evans, H. C. (1997). Parthenium hysterophorus: a review of its weed status and the possibilities for biological control. Biocontrol News and Information, 18, 89–98.Google Scholar
  7. Evans, H. C. (1998). Major Indian weeds of Neotropical origin and the possibilities for collaborative biocontrol projects. In: P. Ferrar, R. Muniappan, K. P. Jayanth (Eds.), Proceedings of the Fourth International Workshop on Biological Control and Management of Chromolaena odorata (pp. 55–62). Mangilao, Guam: Publication No. 216, Agricultural Experiment Station, University of Guam.Google Scholar
  8. Evans, H. C. (2013). Biological control of weeds with fungi. In F. Kempken (Ed.), The mycota XI. Agricultural applications (pp. 145–172). Berlin-Heidelberg: Springer.CrossRefGoogle Scholar
  9. Evans, H. C., & Ellison, C. A. (1990). Classical biological control of weeds with micro-organisms: past, present, prospects. Aspects of Applied Biology, 24, 39–49.Google Scholar
  10. Farr, D. F., & Rossman, A. Y. (2015). Fungal databases, systematic mycology and microbiology laboratory. USDA: ARS Retrieved May 2, 2015, from http://nt.ars-grin.gov/fungaldatabases/.Google Scholar
  11. Feau, N., Vialle, A., Allaire, M., Maier, W., & Hamelin, R. C. (2011). DNA barcoding in the rust genus chrysomyxa and its implications for the phylogeny of the genus. Mycologia, 103, 1250–1266.CrossRefPubMedGoogle Scholar
  12. Filatov, D. A. (2002). ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes, 2, 621–624.CrossRefGoogle Scholar
  13. Gaudeul, M., Giraud, T., Kiss, L., Shykoff, J. A. (2011). Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia (Asteraceae). PLOS ONE, 6:(3), e17658. doi:10.1371/journal.pone.0017658.Google Scholar
  14. Gerber, E., Schaffner, U., Gassmann, A., Hinz, H. L., Seier, M., & Mueller-Schaerer, H. (2011). Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Research, 51, 559–573.CrossRefGoogle Scholar
  15. Ginns, J. H. (1986). Compendium of plant disease and decay fungi in Canada 1960-1980. Research branch, publication 1813. Ottawa: Agriculture Canada.Google Scholar
  16. Gladieux, P., Giraud, T., Kiss, L., Genton, B. J., Jonot, O., & Shykoff, J. A. (2011). Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in eastern and western Europe. Biological Invasions, 13, 933–944.CrossRefGoogle Scholar
  17. Kiss, L. (2007a). Why is biocontrol of common ragweed (Ambrosia artemisiifolia), the most allergenic weed in eastern Europe, still only a hope? In C. Vincent, M. Goettel, & G. Lazarovits (Eds.), Biological control - a global perspective (pp. 80–91). Wallingford, UK: CABI Publishing International.CrossRefGoogle Scholar
  18. Kiss, L. (2007b). Is puccinia xanthii a suitable biological control agent of Ambrosia artemisiifolia? Biocontrol Science and Technology, 17, 535–539.CrossRefGoogle Scholar
  19. Kovács, G. M., Balázs, T., & Pénzes, Z. (2007). Molecular study of arbuscular mycorrhizal fungi colonizing the sporophyte of the eusporangiate rattlesnake fern (botrychium virginianum, ophioglossaceae). Mycorrhiza, 17, 597–605.CrossRefPubMedGoogle Scholar
  20. Lu, G.-Z., Yang, H., Sun, X.-D., Yang, R.-X., & Zhao, Z.-H. (2004). Puccinia xanthii f. sp. ambrosiae-trifidae, a newly recorded rust taxon on ambrosia in China. Mycosystema, 23, 310–311.Google Scholar
  21. Morin, L., Auld, B. A., & Brown, J. F. (1993). Host range of puccinia xanthii and postpenetration development on xanthium occidentale. Canadian Journal of Botany, 71, 959–965.Google Scholar
  22. Morin, L., van der Merwe, M., Hartley, D., & Muller, P. (2009). Putative natural hybrid between puccinia lagenophorae and an unknown rust fungus on senecio madagascariensis in KwaZulu-Natal, South Africa. Mycological Research, 113, 725–736.CrossRefPubMedGoogle Scholar
  23. Parmelee, J. A. (1977). Puccinia xanthii. Fungi canadenses no. 99. National mycological herbarium, biosystematics research institute. Ottawa: Agriculture Canada.Google Scholar
  24. Pfunder, M., Schürch, S., & Roy, B. A. (2001). Sequence variation and geographic distribution of pseudoflower-forming rust fungi (uromyces pisi s. lat.) on euphorbia cyparissias. Mycological Research, 105, 57–66.CrossRefGoogle Scholar
  25. Seier, M. K. (2005). Exotic beneficials in classical biological control of invasive alien weeds: friends or foes? In D. V. Alford & G. F. Backhaus (Eds.) BCPC Symposium Proceedings No. 81; Plant Protection and Plant Health in Europe: Introduction and Spread of Invasive Species (pp. 191–196). Hampshire, UK: The British Crop Protection Council.Google Scholar
  26. Seier, M. K., Harvey, J. L., Romero, A., & Kinnersley, R. P. (1997). Safety testing of the rust puccinia melampodii as a potential biocontrol agent of Parthenium hysterophorus L. In M. Mahadevappa, & V. C. Patil (Eds.), Proceedings of the first international conference on parthenium management (pp. 63–69). Dharwad, Karnataka, India: University of Agricultural Sciences.Google Scholar
  27. Seier, M. K., Morin, L., Van der Merwe, M., Evans, H. C., & Romero, A. (2009). Are the microcyclic rust species puccinia melampodii and puccinia xanthii conspecific? Mycological Research, 113, 1271–1282.CrossRefPubMedGoogle Scholar
  28. Staden, R., Beal, K. F., & Bonfield, J. K. (2000). The staden package, 1998. Methods in Molecular Biology, 132, 115–130.PubMedGoogle Scholar
  29. Tanner, R. A., Ellison, C. A., Seier, M. K., Kovács, G. M., Kassai-Jáger, E., Berecky, Z., Varia, S., Djeddour, D., Chand Singh, M., Csiszár, A., Csontos, P., Kiss, L., & Evans, H. C. (2015). Puccinia komarovii var. glanduliferae var. nov.: a fungal agent for the biological control of Himalayan balsam (impatiens glandulifera). European Journal of Plant Pathology, 141, 247–266.CrossRefGoogle Scholar
  30. Tomley, A., Evans, H., Ellison, C., Seier, M., Thomas, S., & Djeddour, D. (2004). Release strategies and associated factors affecting the establishment of four rust fungi introduced into Australia between 1991 and 2001 for the biocontrol of Parthenium hysterophorus, cryptostegia grandiflora and lantana camara. In J. M. Cullen, D. T. Briese, D. J. Kriticos, W. M. Lonsdale, L. Morin, & J. K. Scott (Eds.), Proceedings of the XI international symposium on biological control of weeds (p. 612). Canberra, Australia: CSIRO.Google Scholar
  31. Zhang, P., Lu, G. Z., Sun, X. D., Zhang, W., Qu, B., & Tian, X. L. (2011). The infection process of puccinia xanthii f. sp. ambrosiae-trifidae on ambrosia trifida. Botany, 89, 771–777.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Edit Kassai-Jáger
    • 1
    • 2
  • Marion K. Seier
    • 3
  • Harry C. Evans
    • 3
  • Levente Kiss
    • 1
  1. 1.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of Sciences (MTA-ATK)BudapestHungary
  2. 2.Faculty of Health Sciences, Department of EpidemiologySemmelweis UniversityBudapestHungary
  3. 3.CABI Europe-UKSurreyUK

Personalised recommendations