Skip to main content
Log in

Molecular identification of ‘Candidatus phytoplasma asteris’ related strain (16SrΙ-B) associated with Broussonetia papyrifera in Nanjing, China

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A new disease associated with paper mulberry (Broussonetia papyrifera) leaf yellowing and curling symptoms was observed in Nanjing, Jiangsu Province, China, in 2014 and 2015. The disease aetiology was investigated by direct and nested polymerase chain reaction (PCR) with phytoplasma-specific primers, sequencing and phylogenetic analysis. Total DNA extracted from symptomatic paper mulberries and healthy plants was used for PCR amplification. Fragments of 1.2 kb for 16S rDNA, 1.2 kb for rp (ribosomal protein) and 1.1 kb for tuf (translation elongation factor EF-Tu) were obtained in symptomatic paper mulberries, whereas these fragments were absent in healthy plants. The resulted sequences were identified using BLAST search tool as belonging to phytoplasmas. Comparison results showed that 16S rDNA fragment of this phytoplasma was homologous with the members of 16SrΙ (AY) group and shared 100 % identity with the sequences of ‘Candidatus Phytoplasma asteris’-related strain AY-27 (HM467127.1)(16SrΙ-B group). Virtual restriction fragment length polymorphism (RFLP) also showed the same results. In addition, rp and tuf fragments of this phytoplasma shared 99 % identity with the members of 16SrΙ subgroup B. This is the first report of a phytoplasma member from AY group (16SrΙ group) infecting paper mulberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. Journal of Microbiological Methods, 14, 53–61.

    Article  CAS  Google Scholar 

  • Gai, Y. P., Han, X. J., Li, Y. Q., Yuan, C. Z., Mo, Y. Y., Guo, F. Y., Liu, Q. X., & Ji, X. L. (2014). Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease. Plant, Cell and Environment, 37, 1474–1490.

    Article  CAS  PubMed  Google Scholar 

  • Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., & Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 106, 6416–6421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Tian, G., Lin, C., Song, C., Mu, H., Ren, Z., Guo, S., Zhou, T., Fan, Z., & Li, H. (2013). Cloning, expression and characterization of tRNA-isopentenyltransferase genes (tRNA-ipt) from paulownia witches'-broom phytoplasma. Wei Sheng Wu Xue Bao, 53, 832–841.

    CAS  PubMed  Google Scholar 

  • Lee, Y. M., Hammond, R. W., Davis, R. E., & Gundersen, D. E. (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of MLO’s. Phytopathology, 83, 834–842.

    Article  CAS  Google Scholar 

  • Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48, 1153–1169.

    Article  CAS  Google Scholar 

  • Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., Bottner, K. D., Marcone, C., & Seemuller, E. (2004). ‘Candidatus phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 4), 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I., Zhao, Y., Davis, R. E., Weintraub, P., & Jones, P. (2009). Prospects of multiple gene-based systems for differentiation and classification of phytoplasmas. Phytoplasmas: Genomes, plant Hosts and Vectors, 51–63.

  • Lim, P. O., & Sears, B. B. (1992). Evolutionary relationships of a plant-pathogenic mycoplasma like organism and acholeplasma laidlawii deduced from two ribosomal protein gene sequences. Journal of Bacteriology, 174, 2606–2611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q. Z., Wu, T. Q., Davis, R. E., & Zhao, Y. (2004). First report of witches’-broom disease of Broussonetia papyrifera and its association with a phytoplasma of elm yellows group (16SrV). Plant Disease, 88, 770–770.

    Article  Google Scholar 

  • Marcone, C., Lee, I. M., Davis, R. E., Ragozzino, A., & Seemuller, E. (2000). Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. International Journal of Systematic and Evolutionary Microbiology, 50(Pt 5), 1703–1713.

    Article  CAS  PubMed  Google Scholar 

  • Peng, X., Teng, L., Wang, X., Wang, Y., & Shen, S. (2014). De novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (broussonetia kazinoki × broussonetia papyifera). PloS One, 9, e97487. doi:10.1371/journal.pone.0097487.

    Article  Google Scholar 

  • Richards, E., Reichardt, M., & Rogers, S. (2001). Preparation of genomic DNA from plant tissue. Current Protocols in Molecular Biology, Chapter 2, Unit2.3, doi:10.1002/0471142727.mb0203s27.

  • Schneider, B., Gibb, K. S., & Seemuller, E. (1997). Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology, 143(Pt 10), 3381–3389. doi:10.1099/00221287-143-10-3381.

    Article  CAS  PubMed  Google Scholar 

  • Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M., & Hogenhout, S. A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 108(48), E1254–E1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H. Y., Yamaji, Y., et al. (2006). Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4252–4257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Wei, W., Lee, I. M., Shao, J., Suo, X., & Davis, R. E. (2013). The iPhyClassifier, an interactive online tool for phytoplasma classification and taxonomic assignment. Methods in Molecular Biology, 938, 329–338.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (J1210056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Shou Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, CJ., Wang, QC., Gui, JC. et al. Molecular identification of ‘Candidatus phytoplasma asteris’ related strain (16SrΙ-B) associated with Broussonetia papyrifera in Nanjing, China. Eur J Plant Pathol 145, 203–207 (2016). https://doi.org/10.1007/s10658-015-0808-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0808-3

Keywords

Navigation